激光能量传输可以实现:• 灵活地将资产放置在需要的地方,而不管最近的电网接入情况如何• 移动、按需充电,可在海底、空中、月球和太空中进行• 解决排放、重量、距离和电池寿命等限制,以及补给和充电成本与危险
量子电池利用量子力学的原理运输和存储能量。我们研究中央旋转量子电池的能量传输,该电池由用作电池电池的N B旋转组成,并被用作充电器电池的N C旋转。我们应用不变的子空间方法来解决大量旋转中央旋转电池的动力学。我们建立了电池容量和电池充电器纠缠之间的普遍反向关系,该纠缠量保持在任何大小的电池和充电器电池中。此外,我们发现当N B = N C时,中央旋转电池具有最佳的能量传输,对应于最小的电池 - 收框纠缠。令人惊讶的是,中央旋转电池在某些电池包量表中具有均匀的能量运输行为。我们的结果揭示了电池包将尺寸与能量转移效率之间的非单调关系,这可能会提供更多关于设计其他类型的量子电池的见解。
量子电池利用量子力学的原理运输和存储能量。我们研究中央旋转量子电池的能量传输,该电池由用作电池电池的N B旋转组成,并被用作充电器电池的N C旋转。我们应用不变的子空间方法来解决大量旋转中央旋转电池的动力学。我们建立了电池容量和电池充电器纠缠之间的普遍反向关系,该纠缠量保持在任何大小的电池和充电器电池中。此外,我们发现当N B = N C时,中央旋转电池具有最佳的能量传输,对应于最小的电池 - 收框纠缠。令人惊讶的是,中央旋转电池在某些电池包量表中具有均匀的能量运输行为。我们的结果揭示了电池包将尺寸与能量转移效率之间的非单调关系,这可能会提供更多关于设计其他类型的量子电池的见解。
1. Lakhdari, A:无线能量传输系统的开发:生物医学领域的应用。(2020 年)。2. Heidarian, M. 和 Burgess, SJ(2020 年)。一种优化谐振线圈和电感链路能量传输的设计技术。IEEE 微波理论与技术学报,69 (1),399-408。3. Gosselin, B.(2011 年)。神经记录微系统的最新进展。传感器,11 (5),4572-4597。4. Tianjia Sun、Xiang Xie 和 Zhihua Wang:用于医疗微系统的无线能量传输。(2013 年)。5. Kiani, M. 和 Ghovanloo, M.(2012 年)。设计高性能感应电能传输链路的品质因数。IEEE 工业电子学报,60 (11),5292-5305。6. Mirbozorgi, SA (2015)。用于植入式医疗设备的高性能无线电源和数据传输接口。7. Kiani, M.、Jow, UM 和 Ghovanloo, M. (2011)。设计和优化 3 线圈感应链路以实现高效的无线电能传输。IEEE
能量整流方面的先驱研究已经表明,在没有温度偏差的情况下,能量通量也可以产生[1–13]。这些原理可以用于构建纳米级能量整流器[6]。从理论角度来看,能量传输通常与声子有关,但与单个粒子相比,这些集体激发更难操控[6, 14]。先前的研究已经利用了非线性相互作用[4]、非热浴[2]、绝热调制的几何相[5]或量子弗洛凯系统[15]提供的机会。通过结合宇称破缺超材料和非平衡强迫,我们最近的研究[16]发现了新的整流原理,其表现为网络系统中站点之间的定向能量流。与之前许多侧重于两个终端之间传输的研究不同,这些终端直接连接 [4] 或通过不对称线段 [2–4] 连接,我们的设置将所有节点及其连接放在平等的地位 [11–13],从而能够将整流研究扩展到具有复杂拓扑和几何形状的网络。基于我们最近的工作 [16],我们在这里研究增加时间周期调制的影响。我们的模型系统是一类弹簧质量网络,其中每个质量都受到时间调制的洛伦兹力 [17, 18] 并浸入活性浴中 [19]。通过数值计算,我们表明时间调制系统能够整流节点和浴之间的能量通量。换句话说,尽管没有温度偏差,我们的模型也可以充当多体能量泵。相比之下,我们之前的未调制系统 [16] 支持站点之间的净能量传输,但不支持站点和浴之间的净能量传输。因此,调制扩展了操纵复杂网络中能量传输的工具箱。我们通过开发一个分析框架来获取数值结果,以了解时间周期调制下复杂网络中的能量整流。
跟踪光伏农场时,主要约束要求 z 轴指向,以便反射光引导至目标 不跟踪时,移动到空闲阶段,反射器边缘朝向太阳,以防止杂散光。主要约束是 x 轴朝向太阳。 目前正在进行刚性和柔性体的指向误差分析 继续研究由于指向误差导致的能量传输损失(IAC 见!)
摘要 — 全球向电动汽车的转变需要开发高效、可持续的电动汽车充电基础设施。本文探讨了将太阳能整合到电动汽车充电站中,解决了快速充电和慢速充电方法的双重问题。通过利用单晶太阳能电池板、电池存储、Arduino Nano 控制器、多级逆变器和降压-升压转换器,拟议的充电站优化了能量传输和电网管理,同时促进了环境可持续性。Arduino Nano 用作充电控制器,监控太阳能电池板的输入电压并调节电池充电。降压-升压转换器促进了不同电压源之间的有效能量传输,确保电动汽车充电的输出电压一致。此外,充电站的设计使多余的太阳能可以储存在电动汽车电池中或卖回电网,从而提高了能源弹性和经济可行性。该研究调查了充电速度、太阳能利用和电网整合之间的动态相互作用,阐明了优化充电体验和促进电动汽车广泛采用的关键考虑因素。此外,通过三小时的太阳能输出读数来评估面板效率,以了解整体系统的性能和效率。
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
本文将分析坡印廷矢量的能量通量与电气工程中的功率流之间的比较,其中功率由电压和电流定义。坡印廷能量通量矢量有其他替代方法,它们更符合电路理论方法,即能量流在电流导体中,而不是在其周围的绝缘层中。一种这样的基本公式仅由总电流密度和电压电位组成,但它需要另一种能量传输定理。斯莱皮安提出的另一种公式仍然符合坡印廷能量传输定理,但它需要增加交变磁矢量电位的功率。坡印廷矢量的替代方法可能更好地说明了电气工程中的能量流,但在它们的普遍性方面可以考虑两点。首先,由于它们由电位表示,因此它们是规范不变的,并且取决于电位的定义。其次,坡印廷矢量用于公式化电磁动量,而任何其他替代能量流矢量都不会。这两个注释在电气工程中并不重要,而这些替代方案可以作为描述功率流的良好替代方案。本文的主要目的是弥合能量通量的物理理论与电力工程方法之间的差异。这可以简化能量通量和坡印廷矢量在工程问题中的使用。