摘要:定向能量沉积工艺的应用范围很广,包括现有结构的修复、涂层或改造以及单个零件的增材制造。由于该工艺经常应用于航空航天工业,因此对质量保证的要求极高。因此,越来越多的传感器系统被用于过程监控。为了评估生成的数据,必须开发合适的方法。在这种情况下,一个解决方案是应用人工神经网络 (ANN)。本文演示了如何将测量数据用作 ANN 的输入数据。测量数据是使用高温计、发射光谱仪、照相机 (电荷耦合器件) 和激光扫描仪生成的。首先,提出了从动态测量数据系列中提取相关特征的概念。然后应用开发的方法生成数据集,用于预测各种几何形状的质量,包括焊缝、涂层和立方体。将结果与使用激光功率、扫描速度和粉末质量流量等工艺参数训练的 ANN 进行了比较。结果表明,使用测量数据可以带来额外的价值。使用测量数据训练的神经网络可以实现更高的预测精度,特别是对于更复杂的几何形状。
摘要:本文评估了通过直接能量沉积 (DED) 粉末涂层翻新磨损的制动盘。使用中碳钢粉末涂覆铸铁盘。该钢的沉积直接在盘表面进行,或者在先前沉积不锈钢缓冲层之后进行。可以看出,尽管在盘与两种不同涂层(缓冲层和外层)之间的界面处形成了铸造微结构,但使用缓冲层可确保良好的涂层附着力。将涂层盘与两种不同的无铜商用摩擦材料进行测试,以评估其摩擦学性能。两种摩擦材料在涂层盘上滑动时测量到的摩擦系数、比磨损率和总排放量非常相似。这些摩擦学数据略高于未涂层盘获得的数据,这表明需要改进顶层涂层成分和表面处理才能获得更好的性能。
摘要:金属增材制造工艺自诞生以来就得到了长足的发展,现代系统能够制造结构应用的部件。然而,要通过这些方法成功加工,需要进行大量实验,才能找到优化参数。在基于激光的工艺中,例如直接能量沉积,通常会沉积单道珠并进行分析,从而获得有关输入参数如何影响输出对基材的粘附等特性的信息。这些特性通常使用专门的软件从切割线珠的横截面获得的图像中确定。所提出的方法基于 Python 算法,使用 scikit-image 库和在 H13 工具钢上生产的 18Ni300 马氏体时效钢的光学显微镜成像,并计算 DED 生产的线珠的相关特性,例如轨道高度、宽度、渗透性、润湿性角度、基材上方和下方的横截面积和稀释比例。 18Ni300 马氏体时效钢沉积物的优化条件为:激光功率为 1550 W,进给速率为 12 g min −1,扫描速度为 12 mm s −1,保护气体流速为 25 L min −1,载气体流速为 4 L min −1,激光光斑直径为 2.1 mm。对于横截面焊道,计算其各自的高度、宽度和穿透力的误差分别为 2.71%、4.01% 和 9.35%;稀释比例计算的误差为 14.15%,基材上方面积的误差为 5.27%,基材下方面积的误差为 17.93%。处理一幅图像的平均计算时间为 12.7 秒。开发的方法是纯分段的,可以从机器学习实施中受益。
摘要:激光导向能量沉积(L-DED)的金属添加剂制造(AM)通常会导致沿构建方向形成纹理柱状晶粒,从而导致各向异性机械性能。这可能会对产品的预期应用产生负面影响。各向异性可以通过在L-DED过程中通过对超声(US辅助)的额外暴露来修改材料来消除各向异性。在本文中,由AISI H13(TLS Technik,Bitterfeld-Wolfen,Germany)工具钢制造了多轨样品,该工具是使用特殊设计的冷却系统的US辅助(28 kHz)L-DED工艺制造的。该研究还包括后处理后的退火和淬火,并通过对修饰钢进行回火热处理,从而导致性质保留,这是由硬度测量结果证实的。XRD分析用于测量晶胞的结构参数,并在两个方向上测量硬度特性:纵向和平行于沉积方向。发现,美国辅助L-DED使我们能够在两个印刷方向上获得具有相等大小的相干散射区域大小的各向同性结构,并减少材料中的残留应力。硬度的各向异性显着降低,在XY和XZ平面之间发现了636和640 HV。基于获得的硬度数据,应注意的是,此处研究的某些热处理也可能导致该性质各向异性的降低,类似于美国辅助效应。
序号 激光功率,W 扫描速度,mm/s 层高,mm 热处理功率,W #1 45.2 2 0.05 0 #2 56.1 2 0.05 0 #3 45.2 4 0.03 0 #4 56.1 4 0.03 0 #5 45.2 2 0.05 30.5 #6 56.1 2 0.05 30.5 #7 45.2 4 0.03 30.5 #8 56.1 4 0.03 30.5
*不包括所有金属 AM 工艺 基于参考文献: • Gradl, P.、Tinker, D.、Park, A.、Mireles, P.、Garcia, M.、Wilkerson, R.、Mckinney, C. (2022)。“航空航天部件的稳健金属增材制造工艺选择和开发”。材料工程与性能杂志 (JMEP)。评论文章。 • ASTM 增材制造技术委员会 F42。增材制造技术标准术语 ASTM 标准:F2792-12a。(2012)。 • Gradl, PR、Greene, SE、Protz, C.、Bullard, B.、Buzzell, J.、Garcia, C.、Wood, J.、Osborne, R.、Hulka, J. 和 Cooper, KG,2018。液体火箭发动机燃烧装置的增材制造:工艺开发和热火测试结果摘要。参加 2018 年联合推进会议(第 4625 页)。
首先,我要感谢我的导师兼西门子导师 Tobias Kamps 的指导、支持和信任。Tobias 是第一个鼓励我并给予我信心开始攻读博士学位的人。在西门子攻读博士学位期间,我学到了很多东西,无论是专业上还是个人方面,因为 Tobias 委托我负责各种内部和外部项目的技术项目管理。我还要感谢我的导师、LTU 的 Jörg Volpp 和 Alexander Kaplan 的指导、随时准备的态度以及推动我做得越来越好。Jörg 总是准备好对科学出版物给出非常快速和详细的反馈,并通过非常深入的科学讨论让我走上正轨。此外,如果没有他和他在科学界的丰富经验,整个组织和我攻读博士学位期间的快速进步是不可能的。Alexander 通过各种研讨会和讨论帮助了我很多,特别是在我攻读博士学位期间的个人发展方面。我真的很感激我们在书评或研讨会上对个性的深入交谈。他总是让我对事物有不同的看法。如果没有他们,这项工作和经历就不会是现在的样子。我还要感谢巴伐利亚合作研究计划 (BayVFP) 为“VALIDAD”项目提供的资金、欧洲创新与技术研究所 (EIT RawMaterials) 为“SAMOA”项目提供的资金以及瑞典研究委员会为“SMART”项目提供的资金。
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
摘要:激光粉末定向能量沉积工艺是一种金属增材制造技术,可制造具有高度几何和材料灵活性的金属零件。原位送粉的独特特性使得在制造过程中使用元素粉末混合物定制元素组成成为可能。因此,它可以潜在地应用于低成本合成工业合金、用不同的粉末混合物改性合金以及使用元素粉末混合物作为原料设计具有位置相关特性的新型合金。本文概述了使用激光粉末定向能量沉积方法通过供给元素粉末混合物来制造各种类型的合金。首先,详细描述了激光粉末定向能量沉积在制造金属合金方面的优势。然后,回顾了通过多种类别的元素粉末混合通过激光粉末定向能量沉积制造合金的最新研究和发展情况。最后,讨论了未来发展中的关键技术挑战,主要是成分控制。
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。