摘要:本文致力于研究熔炼的锭、由其轧制的板材以及由此产生的由耐腐蚀316L钢制成的球形粉末,其中添加了0.2wt.%和0.5wt.%的Ag。研究了抗菌性能、微观结构和银浓度分布,并对银含量进行了定性分析。锭的最佳均匀化退火方式为1050 ◦C,持续9小时,从而形成奥氏体组织。结果表明,添加少量银不会影响奥氏体组织的形成,银均匀分布在锭的整个体积中。轧制后的板材也以奥氏体结构为主。银均匀分布在板材的整个体积中。值得注意的是,添加 0.2 wt.% 的银不会影响钢的强度、伸长率和显微硬度,而添加 0.5 wt.% 的银不会显著降低钢的强度,但所有样品均符合 ASTM A240 标准的机械特性。通过 X 射线荧光分析方法确认了耐腐蚀钢样品的定性化学成分。通过能量色散分析法,确定了银在整个粉末颗粒体积上的均匀分布。颗粒呈球形,缺陷数量最少。平板和粉末的抗菌活性研究表明,在添加0.2wt.%和0.5wt.%Ag的2号和3号样品中存在明显的抗菌效果(对野油菜黄单胞菌属细菌、胡萝卜软腐欧文氏菌、边缘假单胞菌、密歇根棒状杆菌)。
摘要。铜底物的不同组成材料显着影响金属间化合物(IMC)形成和焊接接头耐用性。这项研究是针对无铅焊料和不同铜基板之间的界面反应进行的。选定的底物是铜(CU)和铜 - 晶状体(CU-BE)。所涉及的无铅焊料是直径为700 µm的SN-3.8AG-0.7CU(SAC3807)焊球。所有样品均经过等温老化过程。通过扫描电子显微镜(SEM),光学显微镜(OM)和能量色散X射线分析(EDX)检查了IMC形成的材料表征和分析。回流过程后,结果表明Cu 6 SN 5和Cu 3 SN IMC层在SAC3870/CU和SAC3870/CU-BE界面形成。在SAC3870/ CU上老化处理后,发生了类似杆状的形状Cu 6 Sn 5和针状Cu 3 Sn 4。同时,SAC3870/Cu-Be的IMC层显示出类似杆状的形状,变成了块状的形状形状Cu 6 Sn 5和Cu 3 Sn 4杆形状。此结果表明在SAC3807/CU和SAC3807/CU-BE的老化过程中,在金属间表面上形成了Ag 3 SN纳米大小。与SAC3807/CU相比,SAC3807/CU-BE的Ag 3 Sn纳米尺寸元件很多。此外,SAC3807/CU-BE的IMC厚度比SAC3807/CU显示出较厚的层。此外,由于百分比非常低,因此无法轻易检测到SAC3807/CU-BE的元素。
ATLLAS 高速飞行轻型先进材料的气动和热载荷相互作用 ATLLAS II 轻型先进结构上的气动热力学载荷 II BLOX4 第四激光氧化分析设备 C/C-SiC 碳纤维增强碳化硅复合材料 CMC 陶瓷基复合材料 CTE 热膨胀系数(以 10 -6 °C -1 为单位) CVI 化学气相渗透 DGA 军备总局 DLR 德国空气和空间飞行中心 EDM 电火花加工 EDS 能量色散光谱 ESA-ESTEC 欧洲空间局 - 欧洲空间研究与技术中心 FAST 场辅助烧结技术 HP 热压 PCS 聚碳硅烷(SiC 前体) PIP 前体渗透和热解 PyC 热解碳 RMI 反应熔融渗透 SEM 扫描电子显微镜 SI 浆料渗透 SIP 浆料渗透和热解 SPS 放电等离子烧结 TT 热处理 UHTC 超高温陶瓷 UHTCMC 超高温陶瓷基复合材料 WC 碳化钨 ρ 密度(单位:g/cm 3 ) σ f 弯曲强度(单位:MPa) ε f 弯曲应变(单位:%) d 50 中值粒度(单位:µm) E 杨氏模量(单位:GPa) E f 弯曲模量(单位:GPa) K 1C 断裂韧性(单位:MPa.m 1/2 ) H v 硬度(单位:GPa)
●具有低温和元素分析能力的透射电子显微镜(TEM):配备了Gatan Crotansfer持有者和牛津仪器能量色散X射线光谱仪(EDS)的JEOL JEEL JEM-2100(EDS)。●具有低温和元素分析能力的扫描电子显微镜(SEM):Zeiss Sigma-VP现场发射SEM配备了可变压力,次级电子,透镜和反向散射检测器,Gatan Alto Alto低温制备和加载模块,以及Oxford Encellorments Energy Instruments Energy Encellocts Energy Enstruments Energy Enstruments Energy Enstruments X-Ray Epperersive x-Ray Eppesermate(Eds)。●X射线衍射(XRD):Rigaku X射线衍射仪Ultima IV。●共聚焦拉曼显微镜(CRM):WITEC Alpha 300 R配备有电动XYZ阶段用于大面积摄入,两个激发激光波长(785和532 nm)和10倍至100倍的目标。●高意见筛选系统(HCS):Perkin Elmer Opera Phanix高通量共聚焦荧光显微镜。●傅立叶变换红外光谱仪和显微镜(FTIR):Shimadzu Irtracer-100 FTIR光谱仪,配备了固体和液体的衰减总反射(ATR),适用于传输和反射测量,并与Aimadzu AIM-9000 Microftir系统相结合。●X射线荧光(XRF):Shimadzu EDX-8100 XRF系统,用于粉末,散装和液体样品的元素分析。大气,真空和氦测量值低检测极限。
这种实用的课程为您提供了设计纳米材料并验证其晶体化学和形态的工具。重点是学习访问科学软件包中的关键数据库和培训,以可视化和定量提取晶体学信息。在模块1中,引入了“晶体晶格中的模式”是空间对称性,以使您能够从晶体学开放数据库中读取晶体学信息文件(CIF)。使用此数据晶体结构可以可视化,并计算出粉末X射线衍射模式。在模块2中,“晶体结构的化学”提供了设计具有可接受的键价和稳定化合物的策略,通过晶体结构的细化来表征材料,并通过实验衍射数据的最小二乘细化来找到纳米晶体的尺寸。在模块3中,“晶体组合的特征”将使您能够对多相纳米晶体组合进行定量相分析,并与能量色散X射线光谱化学分析一致。您将掌握四个软件包 - 原子(晶体结构可视化),vesta(键价求和),高分(定量相分析)和DSTA-II(化学微分析) - 共同提供了一个平台,以发现和证明纳米材料的性质。这项实用的课程将为您准备工作,以便在从事材料开发的公司,在进行环境和化学审计的政府机构中工作,或继续进行更高的研究生研究。
近年来,银纳米颗粒电极因其稳定性和导电性而被广泛研究,作为可穿戴和柔性电子产品的电极材料。湿化学沉积技术被认为是一种低成本且可扩展的技术。目前基于湿化学的纳米颗粒沉积技术包括电喷雾沉积、滴铸法、旋涂法和喷墨打印工艺。这些技术通常需要单独的沉积后退火步骤。这对于低熔点的基底来说可能是一个问题。此外,上述某些方法需要物理接触,这增加了交叉污染的可能性。在本研究中,我们提出了一种结合电喷雾和激光辐射的技术,可以在刚性或柔性基底上同时沉积和烧结纳米颗粒。在此过程中,银纳米颗粒水相悬浮液的微滴以所谓的微滴模式从金属毛细管喷嘴喷出,喷嘴可通过电位控制。锥形空心激光束用于蒸发液体并将纳米颗粒烧结到基底上的所需位置。与传统的导电微图案制备方法相比,这项技术前景广阔,因为它简化了一步沉积过程,减少了交叉污染,并且适用于各种表面。我们利用功率为 5 至 13 W 的 Nd:YAG 激光器制备了银纳米颗粒薄膜微图案。我们利用扫描电子显微镜、能量色散 X 射线和四探针分析研究了晶粒尺寸分布、成分和电阻率之间的相关性。结果与传统的热烧结方法相当。
0D 零维 1D 一维 2D 二维 3D 三维 AFM 原子力显微镜 AI 人工智能 AM 增材制造 AMO DOE 先进制造办公室 aPPO 无定形聚环氧丙烷 BES DOE 基础能源科学办公室 BRN 基础研究需求 CAMERA 能源研究应用高级数学中心 CT 计算机断层扫描 DFT 密度泛函理论 DOE 能源部 DPD 耗散粒子动力学 EDS 能量色散 x 射线光谱 EJ 艾焦耳 FEL 自由电子激光器 fs 飞秒 GHG 温室气体 HEDM 高能衍射显微镜 HPC 高性能计算 HTE 高通量实验 iPPO 环氧丙烷等规聚合 IR 红外 LED 发光二极管 Li 锂 MAS 魔角旋转 ML 机器学习 MOF 金属有机骨架 MS 质谱或微秒 NIST 美国国家标准与技术研究所 NOx 氮氧化物 NSLS 美国国家同步加速器光源 PCAST 总统科学技术顾问委员会 PDF 对分布函数 PRD 重点研究方向 ps 皮秒 R&D 研究与开发 s 秒 SAXS 小角度 x 射线散射 SEM 扫描电子显微镜/显微镜 SLM 选择性激光熔化 ssNMR 固态核磁共振 TEM 透射电子显微镜/显微镜 YAG 钇铝石榴石
本研究报告了使用铝粉作为还原剂对铁矿石废料进行激光辅助还原的方法。由于气候变化和全球变暖形势,寻找和/或开发绿色和可持续的钢铁生产工艺已变得至关重要。在这方面,本文提出了一种利用铁矿石的新方法,研究通过铝粉的金属热反应还原铁矿石废料的可能性。对铁矿石粉进行了激光处理,重点研究了 Fe 2 O 3 - Al 相互作用行为和铁矿石还原的程度。材料之间的反应以相当激烈的不受控制的方式进行,导致形成富铁域和氧化铝两个独立的相。此外,还观察到 Al 2 O 3 和 Fe 2 O 3 熔体的组合,以及金属间化合物等过渡区域,表明在孤立区域发生了不完全还原反应。还原铁液滴易于形成球形,主要集中在 Al 2 O 3 熔体表面附近或与氧化铁的界面处。采用扫描电子显微镜、能量色散 X 射线光谱和波长色散 X 射线光谱分析来分析反应产物的化学成分、微观结构和形态外观。使用高速成像研究过程现象并观察粒子运动行为的差异。此外,从 X 射线计算机微断层扫描获得的测量结果显示,在 Fe 2 O 3 - Al 粉末床的激光加工过程中,约有 2.4% 的铁被还原,很可能是由于反应时间不足或两种成分的当量比不合适。
摘要 在以HNO 3 为氧化剂的HF溶液中,银催化刻蚀p型硅变得更加容易。在浸入刻蚀剂溶液之前,在p-Si(100)表面化学沉积银(Ag)。通过在HF/HNO 3 中染色刻蚀,在p-Si上也生成了多孔硅层(PSL)。采用电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、能量色散X射线(EDX)、原子力显微镜(AFM)和X射线衍射(XRD)来评估所生成的PSL的性能。根据SEM,浓度为1×10 −3 M的Ag +离子是在HF/HNO 3 中化学刻蚀之前在Si上沉积的最佳浓度,可得到具有均匀分布的孔隙的PSL。 EIS 数据显示,涂覆的 Si 在 22 M HF/0.5 M HNO 3 中的溶解速度比未处理的 Si 快,从而形成均匀的规则圆形孔 PSL,SEM 显微照片证明了这一点。使用具有两个时间常数的可接受电路模型来拟合实验阻抗值。蚀刻剂 HF 或氧化剂 HNO 3 的浓度增加有助于 Si 的溶解和 PS 的快速发展。AFM 分析表明,随着蚀刻时间的增加,Si 表面的孔宽和粗糙度增加。使用 X 射线光谱衍射来确定不同蚀刻时间后 PSL 的结晶度。
在合金的增材制造过程中,在局部热与物质相互作用后,熔融材料会迅速凝固。然后,在剩余的构建时间内,它会在固态下经历冷却/加热循环,即固态热循环。固态热循环期间产生的热机械力可以触发大量微观机制,从而带来显著的微观结构变化,决定最终成品部件的机械性能。在这项工作中,我们的目标是利用透射电子显微镜深入了解固态热循环驱动的奥氏体不锈钢中亚微米级沉淀物的演变。为此,从预制样品中提取薄膜薄片,并在透射电子显微镜内进行不同的原位固态热循环。固态热循环旨在了解温度幅度和速率、热循环次数和类型以及后处理退火对沉淀物演变的影响。每次热循环前后的高角度环形暗场成像和能量色散 X 射线光谱可深入了解不同热循环因素对沉淀物成分、尺寸和形态演变的贡献。常见趋势包括 Mn 和 Si 从富含 Mn-Si 的氧化物扩散到周围基质中,Cr 环在氧化物沉淀物周围形成,S 在非氧化物沉淀物中重新分布。在 (Upadhyay et al., Sci. Rep. 11 (2021) 10393) 中研究的原样样品中也发现了类似的 Cr 环和 S 分布,这有力地支持了这些结果相对于增材制造过程中发生的情况的代表性。