本论文包含我对 LHC 上 ATLAS 实验中质子-质子碰撞物理研究工作的两个不同方面。第一部分侧重于理解和开发校准系统,以便在过渡辐射跟踪器中获得最佳带电粒子重建。本论文中解释的方法是 TRT 中当前使用的校准技术,它适用于 ATLAS 收集的所有数据。由于开发的方法,实现了探测器设计分辨率,甚至在 TRT 的中心区域得到了改进。在第二部分中,介绍了三种不同的分析。由于我对跟踪的兴趣以及 LHC 上可用的新能量范围,第一个分析是研究 900 GeV 和 7 TeV 的多粒子相关性。这项分析是使用 2010 年收集的第一批 ATLAS 数据进行的。研究了两个不同的方面:高阶矩和尝试测量 η 箱中的归一化阶乘矩。本论文中描述的另外两个数据分析侧重于发现超出标准模型的物理学。同号顶夸克和 b 型第四代夸克的搜索就是其中之一。对于这项分析,详细研究了使用错误电荷测量重建轻子的概率。开发了新的数据驱动方法,其中似然技术表现出色,并被 ATLAS 中的其他分析所采用。这项搜索表明数据与标准模型预期一致。最后的分析是寻找最终状态中有两个轻子且横向能量缺失较大的超对称性。详细描述了双玻色子的产生,这是本次分析的主要背景之一。最终测量结果显示,相对于标准模型的预期,没有超出。
摘要 - 以红毛丹和香兰叶为碳源,通过水热和微波处理合成碳量子点 (CQDs),这是一种简便且环保的方法。本研究介绍了合成方法对 CQDs 光学和物理性质的影响,以及通过 Cu 2+ 检测 CQDs 的传感活性。通过分析发现,CQDs 的带隙能量范围为 2.52 至 3.51 eV。CQDs 溶液表现出明显的荧光特性,在波长约为 405 nm 的紫外 (UV) 光照射下可以检测到明亮的青色荧光。使用水热法从香兰叶和红毛丹叶合成的 CQDs 的量子产率 (QY) 值分别约为 2.46% 和 2.70%。 FT-IR 分析记录了 CQDs 表面现有的功能团为羟基和羰基,可作为检测 Cu2+ 的吸附位点。此外,这项研究表明,使用热液法从香兰叶和红毛丹叶中发射的 CQDs 在检测 Cu 2+ 的存在时表现出最佳的关闭行为,最低检测限 (LoD) 低至 123 µM。关键词——碳量子点 (CQDs);叶子;热液;微波;铜离子。提交:2021 年 1 月 19 日更正:2021 年 4 月 4 日接受:2021 年 4 月 25 日 Doi:http://dx.doi.org/10.14710/wastech.9.1.1-10 [如何引用本文:Kasmiarno, LD, Fikarda, A., Gunawan, RK, Isnaeni, Supandi, Sambudi, NS。 (2021)。碳量子点(CQds)来自
本研究研究了混凝土的辐射屏蔽特性,该特性融合了稻壳灰(RHA),牡蛎壳粉(OSP)和铁粉(FEP)。四个混凝土混合样品ି一种标准混凝土(C -M25)和三个具有40%RHA(C -RHA),OSP(C -SOSP)和FEP(C -FEP)的混凝土样品,作为良好的聚集物替换率ି,以后进行了ASTM C31。通过Epixs软件的插值来计算样品的光子衰减参数。总原子交叉 - 段(σT)值按以下顺序排名:C- FEP> c -osp> c -M25> c -c -rha。c -fep具有最大的MAC值,除了662ି1332KEV的能量范围,其中C -OSP表现出较高的值。C -fep的HVL在整个光子能量上是最高的,其值分别为3.07、4.05、5.34和5.70 cm,分别为356、662、1173和1332 KEV。c -fep在整个光子能量范围内达到了最大的z eff值,这归功于其高浓度的高z元素ିfe和ca。虽然混凝土样品的值接近,但C -fep以40 mfp获得了最低的EABF和EBF因子。c -fep是三个样品中最好的混凝土混合物,在考虑的所有辐射屏蔽参数方面达到了较高的值。与利用其他废物副产品的其他屏蔽材料相比,研究中的混凝土样品显示了材料的MAC和HVL的可比值。
在过去的几年中,已使用两种主要方法来研究Fe 2+的分布和局部协调环境和固体中的Fe 3+离子在微米或亚微米计尺度上:(1)X射线吸收光谱(XAS)与同步型光源(尤其是第二个和第三代能量的启发)(尤其是较高的能量射击量和高量)(尤其是较高的能量范围)(2001)和(2)具有透射电子显微镜的电子能量损失光谱(EEL)(在纳米尺度上提供高空间分辨率)(Van Aken等人。1998,1999)。 For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components. 铁表现出未填充的3D状态(3d 51998,1999)。For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components.铁表现出未填充的3D状态(3d 5
硅雪崩光二极管(APD)被广泛用作光子探测器,但是它们也可用于检测具有能量𝐸𝐸100keV的电子。尤其是,近年来对APD的使用来检测中等能量范围(10-100 KEV)的电子,特别是对于空间任务中的应用[1-3],APD耐用性与对磁场对磁场的敏感性相结合,具有吸引人的特征。虽然已经进行了一些研究使用APD来检测低能电荷颗粒[4],但使用APD来检测低(<1 keV)的能量电子是一个较少研究的领域,这是这项工作的主题。本文介绍的结果是在新型UV光检测器(Nanouv)开发的背景下产生的,并具有由垂直分配的碳纳米管制成的光(5-8]。垂直分配的碳纳米管可以使用化学蒸气沉积技术[9]生长至几百μm的长度,结果是获得高度各向异性的材料,并获得了管道方向的理想情况下,具有理想的消失密度[10,11]。由这种材料制成的光电行为可以显着降低照相电子重新吸收的可能性,这是现代紫外线探测器的不良效率的主要原因,因为光电子将直接散发到真空中,并且能够使纳米纤维ex nanotubes exul is the Mommante is pare the tube tube tube ubsum tube ubsum tub tubsum tubsum tubsum tub tub。然后通过施加的电势δ𝑉10kV加速电子,然后由位于真空管另一端的硅APD检测到长达几厘米。在图中可以看到Nanouv检测器概念的示意图1。
本论文包含我对 LHC 上 ATLAS 实验中质子-质子碰撞物理研究工作的两个不同方面。第一部分侧重于理解和开发校准系统,以便在过渡辐射跟踪器中获得最佳带电粒子重建。本论文中解释的方法是 TRT 中当前使用的校准技术,它适用于 ATLAS 收集的所有数据。由于开发的方法,实现了探测器设计分辨率,甚至在 TRT 的中心区域得到了改进。在第二部分中,介绍了三种不同的分析。由于我对跟踪的兴趣以及 LHC 上可用的新能量范围,第一个分析是研究 900 GeV 和 7 TeV 的多粒子相关性。这项分析是使用 2010 年收集的第一批 ATLAS 数据进行的。研究了两个不同的方面:高阶矩和尝试测量 η 箱中的归一化阶乘矩。本论文中描述的另外两个数据分析侧重于发现超出标准模型的物理学。同号顶夸克和 b 型第四代夸克的搜索就是其中之一。对于这项分析,详细研究了使用错误电荷测量重建轻子的概率。开发了新的数据驱动方法,其中似然技术表现出色,并被 ATLAS 中的其他分析所采用。这项搜索表明数据与标准模型预期一致。最后的分析是寻找最终状态中有两个轻子且横向能量缺失较大的超对称性。详细描述了双玻色子的产生,这是本次分析的主要背景之一。最终测量结果与标准模型预期相比没有超出。
超新星(SNS)是星际介质中重要的能量来源。超新星(SNR)的年轻残留物在X射线区域显示峰值发射,使其成为X射线观测的有趣对象。尤其是,由于其历史记录,接近性和亮度,Supernova Remnant SN1006引起了极大的兴趣。因此,已对其进行了许多X射线望远镜进行了研究。改善此残留物的X射线成像是一项重要但具有挑战性的任务,因为它通常需要对图像整个对象进行不同仪器响应的多次观察。在这里,我们使用Chandra观测来证明使用信息字段理论(IFT)的贝叶斯图像重建能力。我们的目标是从X射线观测值重建,脱卷和空间 - 光谱分辨的图像,并将发射分解为不同的形态,即弥漫性和点状。此外,我们的目标是将来自不同检测器和点的数据融合到马赛克中,并量化结果的不确定性。通过利用有关扩散发射和点源的空间和光谱相关结构的先验知识,该方法允许信号有效分解为这两个组件。为了加速成像过程,我们引入了一种多步进方法,其中使用单个能量范围获得的空间重建用于得出完整时空光谱重建的知情起点。我们将此方法应用于2008年和2012年的SN1006的11个Chandra观察结果,提供了残留物的详细,剥夺和分解的观点。尤其是,弥漫发射的分离视图应提供对残留物中心和冲击前剖面中复杂的小规模结构的新见解。例如,我们的分析揭示了在SN1006的冲击阵线下,锋利的X射线通量最多增加了两个数量级。
摘要 — 电信卫星的电轨道提升 (EOR) 显著减少了机载燃料质量,但代价是延长了传输时间。这些相对较长的传输通常持续数月,跨越大跨度的辐射带,导致航天器严重暴露于太空辐射中。由于中间辐射带区域密度不大,因此与标准环境模型中的低地球轨道或地球静止轨道等热门轨道相比,其辐射环境受到的限制较少。特别是,需要更具体的 MeV 能量范围质子通量模型,因为质子通量是造成太阳能电池阵列退化的原因,因此对 EOR 任务至关重要。作为 ESA ARTES 计划的一部分,ONERA 已经开发了专用于 EOR 任务的质子通量规范模型。该模型可以估算 EOR 传输典型持续时间内任意轨迹上 60 keV 到 20 MeV 之间的平均质子通量。从范艾伦探测器 RBSPICE 数据中提取了辐射带的全局统计模型。对于没有或低采样的区域,使用 Salammbô 辐射带模型的模拟结果。特别注意对所考虑的任务持续时间内辐射带的时间动态进行建模。开发了高斯过程模型,可以分析计算任意任务持续时间内平均通量的分布。卫星轨迹可以在得到的全局分布中绘制,从而得到航天器所见的质子通量谱分布。我们展示了该模型在典型 EOR 轨迹上的结果。将获得的通量与标准 AP8 模型、AP9 模型进行比较,并使用 THEMIS 卫星数据进行验证。我们说明了对太阳能电池退化的预期影响,与 AP8 相比,我们的模型显示退化预测增加了高达 20%。
烧结(DC)和两者使用原位反应的变体已成为产生相对密度以上相对密度的相纯UHTC的偏爱烧结方法。15–19对于IV组的烧结(0.65 <ρ相对<0.90)的中间阶段,据报道,据报道的激活能量范围为140至695 kJ/mol的Zrb 2,56至774 kJ/mol的TIB 2,以及96 kJ/mol的HFB 2。5,20–23总体而言,研究得出的结论是,尽管激活能的值应仅取决于致密化的机械性,但更细的初始粒径和增加的压力降低了激活能量。对于烧结的中间阶段,Lonergan报道说,晶界扩散是在2000℃低于2000℃的反应热的Zrb 2中的主要机制,其激活能为241 kj/mol,但晶状体扩散成为2000°C的主要机制,其激活能量为695 kJ/mol。21 Kalish研究了HFB 2的极端压力(800 MPa)下的致密性最后阶段的动力学,并报告了激活能为96 kJ/mol。kalish建议该机制可能是脱位流,因为激活能量足够低,但没有提供其他机械的证据。kalish最终得出结论,在HFB 2的致密阶段,HF的B或晶界扩散是HF的晶界扩散是主要机制。5从那时起,几项研究报告了硼化物中的脱位运动。Koval'Chenko得出结论,脱位运动受到金属sublattice中金属物种的自扩散的限制。2424–29 Koval'Chenko螺柱的钼和钨硼的致密动力学,并报道激活能量是压力的独立性,这表明脱位滑行过程。28 bhakhri估计了使用压痕实验的154±96 kJ/mol中ZRB 2中脱位运动的活化能,并假设汉堡矢量沿着<1 0 0 0 0>方向。
摘要。基于密度功能理论(DFT)的第一原理计算已用于研究α-GAN晶体的结构,电子,光学和热力学方面。基于局部密度近似(LDA),广义梯度近似(GGA)和荟萃分析梯度近似(M-GGA)功能方法,已经估计α-GAN晶体的带隙能量为1.962 eV,2.069 ev和2.354 ev。这些研究中介绍的带隙能量与其他实验和理论研究的能量一致。此外,我们的发现使我们了解了α-GAN晶体的电子和光学特性。α-GAN晶体中的带隙能是定义其电气和光学特征的关键因素。它们是可以将电子从价带向传导带退出的能量范围,从而影响材料的电导率以及材料吸收并发出光的能力。我们在先前的研究中的结果大致表明了我们发现的可靠性,因此增加了我们对α-GAN的电子和光学现象的了解。通过模拟状态密度和α-GAN的状态部分密度,发现了GA和N原子的轨道特性。除了分析带结构,状态的密度和我们还包括化合物的光学特性外。结果表明α-GAN具有直接的带隙,该带隙位于布里群区的G点。这是其开发光电设备的巨大潜力的原因。此外,我们使用前面给出的三个近似值来找到该化合物的光学特性(吸收系数)。除此之外,可以像Debye温度,焓,自由能,熵和热容量一样计算的热力学特性使我们能够更好地了解化合物的热行为。检测到α -GAN的热容量为17.3 Jmole -1 K -1,Debye温度为824.6K。这项研究将对α-G-N提供详细的解释,涵盖其所有基本特性以及光电和电子设备中可能的应用。这项研究的结果非常重要,基于α-GAN研究将开发的新技术将非常有益。