摘要:霉菌酸构成结核分枝杆菌细胞壁结构内的关键成分。由于其结构多样性,霉菌酸的组成在不同菌株之间表现出很大的变化,从而赋予了它们是分枝杆菌物种的“特征”特征的独特标签。在结核分枝杆菌中,霉菌酸的主要类别包括α-,酮 - 和甲氧基麦芽酸。虽然这些霉菌酸主要是将结核分枝杆菌的细胞壁成分(例如阿拉伯乳半于阿拉伯分氏菌,藻酸盐或葡萄糖)酯化成的,但在细菌体外生长过程中,自由霉菌酸的一小部分是分泌的。值得注意的是,不同类型的霉菌酸具有不同的能力来诱导泡沫状宏观噬菌体和触发免疫反应。此外,霉菌酸在宿主细胞的脂质代谢中起调节作用,从而对结核病的进展产生影响。conse-霉菌酸的多方面特性塑造了结核分枝杆菌采用的免疫逃避策略。对霉菌酸的全面理解对于追求结核病治疗并揭示其致病机制的复杂性至关重要。
信息RNA(mRNA)技术的细胞内传递已在一个充满希望的时代迎来了冠状病毒病19(COVID-19)大流行的两种mRNA疫苗的授权。正在进行广泛的临床研究,并将在可预见的将来开始治疗和预防癌症。然而,治疗性mRNA的有效和无毒的传递是其在人类中广泛应用的关键有限步骤。mRNA输送系统迫切需要解决这一困难。最近的脂质纳米颗粒(LNP)车辆以功能强大的mRNA递送工具繁荣发展,通过癌症免疫疗法和基于CRISPR/CAS9的基因编辑技术实现了它们在恶性肿瘤中的潜在应用。本综述讨论了mRNA-LNP的配方组成部分,总结了mRNA癌症治疗的最新发现,突出了挑战,并为癌症患者提供了更有效的纳米疗法方向。
1. 诺丁汉特伦特大学科学技术学院药理学系,诺丁汉 NG11 8NS,英国。2. 纳米医学实验室,药学和验光学系,生物、医学和健康学院,AV Hill 大楼,曼彻斯特大学,曼彻斯特 M13 9PT,英国。3. 神经科学和实验心理学系,生物科学学院,生物、医学和健康学院,曼彻斯特大学,曼彻斯特 M13 9PT,英国。4. 心血管科学系,Lydia Becker 免疫学和炎症研究所,医学科学学院,生物、医学和健康学院,曼彻斯特学术健康科学中心,曼彻斯特大学,曼彻斯特,英国。5. 曼彻斯特临床神经科学中心,索尔福德皇家 NHS 基金会,曼彻斯特学术健康科学中心,索尔福德,英国。 6. 纳米医学实验室,加泰罗尼亚纳米科学与纳米技术研究所 (ICN2),巴塞罗那 Bellaterra UAB 校区,西班牙。7. 英国曼彻斯特大学北方护理联盟 NHS 集团曼彻斯特学术健康科学中心杰弗里杰斐逊脑研究中心。
管理神经退行性疾病的挑战是全球关注的问题,尤其是在老龄化的人口中。神经退行性疾病是一组多种疾病,其特征是神经细胞的结构和功能进行性变性。神经退行性疾病以惊人的速度增加,因此,迫切需要对各种代谢疾病的各种疾病进行深入分析,以改变细胞的正确功能。脂质代谢是一个涉及脂质的合成和同时降解的过程,并涵盖了维持细胞结构和功能能力至关重要的平衡。雄激素受体(AR)在调节细胞功能中起关键作用。最近的研究扩大了我们关于线粒体,过氧化物酶体和雄激素受体之间直接或间接相互作用的知识,这些相互作用在脂质稳态中起着至关重要的作用。由于受体激发或抑制作用引起的脂质和胆固醇的不寻常水平与多种疾病有关,并且引起了人们的关注。雄激素受体以及其他受体和蛋白质形成重要的代谢级联反应,如果改变,可能会导致脂质的积累并导致神经性疾病。在这篇综述中,我们强调了雄激素受体在神经退行性疾病期间调节脂质和胆固醇水平(阿尔茨海默氏症,帕金森氏症,多发性硬化症和亨廷顿氏病)中的作用。在这篇综述中,我们强调了雄激素受体在神经退行性疾病期间调节脂质和胆固醇水平(阿尔茨海默氏症,帕金森氏症,多发性硬化症和亨廷顿氏病)中的作用。
DOX的潜力。 以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。 然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。 基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。 纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。 网状内皮系统很容易省略大于30 nm的纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。 zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和之间的排斥力DOX的潜力。以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和
Ganglioside是控制细胞通信中关键功能的膜脂质筏的功能成分。许多病理涉及筏子神经苷,因此代表了开发创新治疗策略的首选方法。首先讨论了一种疾病(而不是),本综述列出了涉及神经毒剂的主要人类病理,包括癌症,糖尿病以及传染性和神经退行性疾病。在大多数情况下,问题是由于蛋白质与神经节的结合会产生病理状况或损害生理功能。然后,我绘制了蛋白质 - 蛋白质相互作用的不同分子机制的清单。我建议将蛋白质的神经节苷脂结合域分为四类,我将其命名为GBD-1,GBD-2,GBD-3和GBD-4。这种结构和功能分类可以有助于合理化能够破坏所选蛋白与神经节的结合而不会产生不良影响的创新分子的设计。在人脑中表达的神经节剂的生化特异性也必须考虑在阿尔茨海默氏病和帕金森氏病的动物模型(或任何无动物替代品)的可靠性。
癌症是当今世界人类死亡的第一大原因,癌症的治疗过程高度复杂,化疗和靶向治疗是癌症治疗中常用的方法,而耐药性的产生是癌症治疗中的一个重要问题,因此癌症治疗过程中耐药性的机制成为当前研究的热点问题。一系列研究发现脂质代谢与癌症耐药性密切相关,本文详细介绍了耐药性中脂质代谢的变化以及脂质代谢如何影响耐药性。更重要的是,大多数研究报道联合治疗可能导致脂质相关代谢途径的改变,从而可能逆转癌症耐药性的产生,增强或挽救对治疗药物的敏感性。本文综述了针对脂质代谢的药物设计在改善耐药性方面的进展,为未来的肿瘤治疗提供新的思路和策略。因此,本文对药物与脂质代谢和耐药性的联合应用问题进行了综述。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 6 月 25 日发布。;https://doi.org/10.1101/2023.06.23.546235 doi:bioRxiv preprint
摘要 脂质纳米载体因具有可生物降解、生物相容性、无毒性、无免疫原性等优点,在药物输送方面得到了广泛的研究。然而,传统脂质纳米载体存在靶向性差、易被网状内皮系统捕获、消除快等缺点,限制了药物输送效率和治疗效果。因此,一系列多功能脂质纳米载体被开发出来,以增强药物在病变部位的蓄积,旨在提高各种疾病的诊断和治疗效果。本文综述了脂质纳米载体的研究进展和应用,从传统到新型功能性脂质制剂,包括脂质体、刺激响应型脂质纳米载体、可电离脂质纳米颗粒、脂质杂化纳米载体以及生物膜伪装纳米颗粒。
正常的人类细胞可以合成胆固醇或从脂蛋白中取出以满足其代谢需求。在某些恶性细胞中,从头胆固醇的合成基因是转录静音或突变的,这意味着生存需要脂蛋白的细胞摄取。最近的数据表明,依赖于脂蛋白介导的胆固醇摄取的淋巴瘤细胞也会受到氧化和铁依赖性细胞死亡机制的影响,这是由细胞膜中氧化脂质积聚而触发的,除非脂质氢氧化酶4(glutathione periquidase 4(GPEXID)的氧化脂质酶4(GPSID)对氧化脂蛋白溶液酶4(GPXID酶4(GPXID)。研究将胆固醇摄取的机制与铁凋亡联系起来,并确定高密度脂蛋白(HDL)受体作为胆固醇消耗疗法的靶标的潜在作用,我们治疗了淋巴瘤细胞系已知对减少HDL型Nananoparke(Hdplike nanopark)(Hdplike nanapters)(Hdpp)(Hdplike nanopart)(Hdpp)(Hdplike)敏感。HDL NP是一种胆固醇贫乏的配体,与富含胆固醇的HDL,可寻求的B1型HDL结合(Scarb1)。我们的数据表明,HDL NP治疗激活了治疗细胞中的分解代谢反应,降低了从头胆固醇的合成,伴随着GPX4表达的几乎完全降低。结果,氧化的膜脂质积聚,通过与铁吞作用一致的机制导致细胞死亡。全身在小鼠淋巴瘤异种移植物和从淋巴瘤患者获得的主要样品中,全身给药后,我们在体内获得了相似的结果。总而言之,用胆固醇吸收中的HDL NP靶向SCARB1 - 上瘾的淋巴瘤细胞消除了GPX4,导致癌细胞死亡与与铁毒性相一致的机制。