受微生物利用铁载体吸收铁的机制的启发,制备了四种不同的含有儿茶酚酸和/或异羟肟酸基团的典型人工铁载体配体的 Fe III 配合物,即 K 3 [ Fe III - L C3 ]、K 2 [ Fe III - L C2H1 ]、K[ Fe III - L C1H2 ] 和 [ Fe III - L H3 ]。它们被修饰在金基底表面 ( Fe-L /Au),并用作微生物固定化装置,可快速、灵敏、选择性地检测微生物,其中 H 6 L C3 、H 5 L C2H1 、H 4 L C1H2 和 H 3 L H3 分别表示三儿茶酚酸、双儿茶酚酸-单异羟肟酸、单儿茶酚酸-双异羟肟酸和三异羟肟酸类型的人工铁载体。利用扫描电子显微镜 (SEM)、石英晶体微天平 (QCM) 和电阻抗谱 (EIS) 方法研究了它们对几种微生物的吸附性能。在金底物 Fe-L C3 /Au、Fe-L C2H1 /Au、Fe-L C1H2 /Au 和 Fe-L H3 /Au 上修饰的人工铁载体-铁配合物表现出特定的微生物固定行为,并且基于人工铁载体的结构具有选择性。它们的特异性与微生物从细胞中释放或用来吸收铁的天然铁载体的结构特征很好地对应。这些研究结果表明,释放和吸收是通过人工铁载体-Fe III 配合物与微生物细胞表面受体之间的特定相互作用实现的。这项研究表明,Fe-L/Au 体系具有作为有效的微生物固定探针的特殊潜力,可以快速、选择性地检测和鉴定各种微生物。
用于 MEMS 封装的高柔性芯片粘接粘合剂 Dr. Tobias Königer DELO 工业粘合剂 DELO-Allee 1 86949 Windach,德国 电话 +49 8193 9900-365 传真 +49 8193 9900-5365 电子邮件 tobias.koeniger@delo.de 摘要 大多数 MEMS 封装的芯片粘接材料必须具有高柔性,因为在装配过程和应用过程中的温度变化可能导致热机械应力,这是由于基板、芯片和粘合剂的热膨胀系数不同造成的。热机械应力会导致对应力极为敏感的 MEMS 设备的信号特性失真。在本文中,我们开发了高柔性热固化粘合剂,其杨氏模量在室温下低至 5 MPa (0.725 ksi)。 DMTA 测量表明,在 +120 °C (+248 °F) 温度下储存不会导致粘合剂脆化,而脆化会对 MEMS 封装的可靠性产生负面影响。在 +120 °C (+248 °F) 下储存长达 1000 小时后,杨氏模量没有增加。粘合剂在低至 +100 °C (+212 °F) 的极低温度下固化,从而减少了组装过程中的应力产生。此外,粘合剂具有非常友好的工艺特性。处理时间可以达到一周以上。双重固化选项可在几秒钟内对芯片进行初步光固定。关键词粘合剂、MEMS 封装、应力、芯片粘接、粘合
该轨道旨在探索欧洲空间内新兴的边缘化和脆弱化地理和过程。该轨道欢迎致力于农村和内陆地区以及城市化地区之间、中型城市和去工业化地区的贡献,这些地区在经历了数十年的人口和经济增长或稳定后,面临着新的(和意想不到的)边缘化和脆弱化过程。特别关注人口减少、未充分利用和废弃建筑存量等主题,以及经济和文化贫困以及基本公共服务供应减少。经过数十年的增长或稳定,新的和意想不到的边缘化和脆弱化过程正在改变欧洲城市和地区,破坏领土凝聚力。该轨道中包含的贡献涉及导致边缘化和脆弱化过程的新旧因素,例如人口、经济、空间、环境、社会和政治条件。此外,一些贡献者提出了对整个欧洲正在发生的边缘化和脆弱化过程的最新描述,并反思了描述这些长期已知现象的新方法。在反思边缘化和脆弱地区在未来全球和欧洲情景中可能发挥的作用的同时,该轨道旨在促进对空间政策的(重新)设计的反思,以应对当今欧洲正在进行的边缘化/脆弱化进程。
<推进部门> NEDO 机器人与人工智能部部长古川义典 NEDO 机器人与人工智能部首席研究员三代川近宏 NEDO 机器人与人工智能部首席研究员柴田聪
Kath y Abbott ,博士,FRAeS,担任美国联邦航空管理局 (FAA) 驾驶舱人为因素首席科学技术顾问,负责人为表现和人为错误、系统设计和分析、机组人员培训/资格以及机组人员操作和程序等方面的研究。
高级飞行员娜塔莉·多安 (Natalie Doan) 第 374 空运联队公共事务部 2024 年 7 月 5 日 由五架美国空军和韩国空军 C-130J 超级大力神飞机组成的编队于 6 月 25 日在朝鲜半岛上空进行了大规模空投补给任务,这是提高战术空运能力的训练的一部分。 此次训练是美韩空军首次在朝鲜半岛上空进行五机编队飞行,彰显了韩国空军、第7航空队和第374空运联队为加强美韩两军关系和互操作能力所做的努力。 “来自横田空军基地的一架 C-130 和来自金海的一支韩国空军部队正在参与协助空投集装箱运送系统物资,”负责协调地面控制和指定空投区的第 607 空中支援行动组的飞机机动联络官乔治·福金上尉说。 第 36 空运中队的飞行员驾驶四架 C-130J 从横田空军基地飞往韩国金海空军基地,美国和韩国空军飞行员在那里将集装箱运送系统物资装载到每架飞机上。 其间,美国和韩国空军的飞行员也参加了简报会,讨论任务的细节。 第 36 空运中队地区军事交流负责人 Timothy Kim 上尉表示:“第 36 空运中队进行这次训练是为了与韩国空军建立互操作能力并进行战术空投训练。空投和战术飞行演习对第 36 空运中队来说非常有价值,特别是在它从未经历过的空域和空投区。这是与我们的韩国盟军一起飞行的绝佳机会。” 第 36 空运中队和韩国空军上一次合作是在 2023 年的圣诞空投行动中,向密克罗尼西亚的 58 个偏远岛屿运送了人道主义援助。此前,两军在“HERC GUARDIANS 23”联合演习中进行了合作,演习内容涉及低空飞行和编队飞行相结合的战术编队训练。 金熙俊少校是第 36 空运中队的 C-130J 超级大力神教练飞行员,他担任 HERC GUARDIANS 23 演习的副任务指挥官以及本次空投训练演习的任务指挥官。他说,与 HERC GUARDIANS 23 建立的经验和关系帮助两国军队成功协调偏远地区的任务规划并执行大规模空投补给任务。 Heejun 少校说道: “这些演习证明,在危机时刻,我们可以共同努力、相互支持。我们一起训练得越多,我们就能更好地合作。我们必须克服各种障碍,从不同的单位运作模式到语言障碍。只有通过共同努力和更好地相互理解,才能克服这些障碍,这样我们才能作为一支联军有效、高效地合作。”
先生(右二)及Meridian Innovation (迈瑞迪创新) Stanislav Markov 博士(右一)在业界分享