特性 增强的系统级 ESD 性能,符合 IEC 61000-4-x 标准 低功耗工作 5 V 工作 0 Mbps 至 2 Mbps 时每通道最大值 2.0 mA 10 Mbps 时每通道最大值 4.1 mA 90 Mbps 时每通道最大值 36 mA 3.3 V 工作 0 Mbps 至 2 Mbps 时每通道最大值 1.0 mA 10 Mbps 时每通道最大值 2.8 mA 90 Mbps 时每通道最大值 17 mA 双向通信 3.3 V/5 V 电平转换 高温工作:105°C 高数据速率:直流至 90 Mbps (NRZ) 精确的时序特性 2 ns 最大脉冲宽度失真 2 ns 最大通道间匹配 高共模瞬变抗扰度:>25 kV/μs 输出使能功能 16 引脚 SOIC 宽体、符合 RoHS 标准的封装 安全和法规认证 UL 认证:2500 V rms持续 1 分钟,符合 UL 1577 标准 CSA 元件验收通知 5A VDE 符合性证书 DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 VIORM = 560 V 峰值 CQC 认证符合 GB4943.1-2011
我们提出了一种用于电刺激周围神经的无线、完全可植入设备,该设备由供电线圈、调谐网络、齐纳二极管、可选刺激参数和刺激器 IC 组成,全部封装在生物相容性硅胶中。13.56 MHz 的无线射频信号通过片上整流器为植入物供电。ASIC 采用台积电的 180 nm MS RF G 工艺设计,占地面积不到 1.2 平方毫米。该 IC 通过片上只读存储器实现外部可选的电流控制刺激,具有 32 个刺激参数(90 – 750 μA 幅度、100 μs 或 1 ms 脉冲宽度、15 或 50 Hz 频率)。IC 使用 8 位二进制加权 DAC 和 H 桥生成恒定电流波形。在最耗电的刺激参数下,刺激脉冲期间的平均功耗为 2.6 mW,电能传输效率约为 5.2%。除了台式和急性测试外,我们还在两只大鼠的坐骨神经上长期植入了两种版本的设备(一种是带导线的设计和一种是无导线的设计),以验证 IC 和整个系统的长期疗效。无导线设备的尺寸如下:高 0.45 厘米,长轴 1.85 厘米,短轴 1.34 厘米,带导线的设备尺寸类似
注释:1. 百分比电流传输比定义为输出集电极电流 IO 与正向 LED 输入电流 IF 之比乘以 100。2. 器件被视为双端器件:引脚 1 和 3 短接在一起,引脚 4、5 和 6 短接在一起。3. 按照 UL 1577,每个光电耦合器都通过施加 4800 V RMS 的绝缘测试电压 1 秒进行验证测试。4. 逻辑高电平下的公共瞬态抗扰度是共模脉冲 V CM 上升沿上的最大可容忍(正)dV CM /dt,以确保输出将保持在逻辑高状态(即 VO > 2.0 V)。逻辑低电平下的共模瞬变抗扰度是共模脉冲信号 V CM 下降沿可容忍的最大(负)dV CM /dt,以确保输出保持在逻辑低状态(即 VO < 0.8 V)。5. 1.9 k 负载代表 1.6 mA 的 1 TTL 单位负载和 5.6 k 上拉电阻。6. 交流输出电压比其中频值低 3 dB 的频率。7. 建议使用连接引脚 4 和 6 之间的 0.1 μF 旁路电容。8. 对于任何给定设备,脉冲宽度失真 (PWD) 定义为 |t PHL - t PLH |。9. 在相同测试条件下,任何两个部件之间的 t PLH 和 t PHL 之间的差值。
使用图1中描述的设置用于表征此混合平台中的光子生成过程。用带宽为0.52 nm的脉冲激光器以1550.97 nm为中心,脉冲宽度为1 ps,用Erbium-poped纤维放大器(EDFA)放大,为此过程产生强泵。然后通过变量光衰减器(VOA)通过,以使功率完全可调至-60 dB,而无需更改脉冲特性。使用≥80dB的组合抑制带抑制的两个密度波长多路复用器(DWDM)过滤器,用于从进入信号和惰轮收集带宽的激光器中消除泵噪声。将它们放置在极化控制器之前,以优化插入的光,以用于设计光栅耦合器的TE极化。a 99:1梁分离器允许通过安装在探针站的一个臂上的V型槽光纤阵列来监视所测试设备的功率(DUT)。从探测站输出后,使用多通道DWDM模块驱动信号和惰轮频率并拒绝泵。然后将一个额外的单通道DWDM放在信号和怠速通道上以进行额外过滤。芯片后这种过滤还为每个通道提供了≥80dB的排斥带抑制。最后,将两个通道通过光纤网络路由到两个连接到时间间隔分析仪(TIA)的光子柱超导纳米线单光子探测器(SNSPD)。
特性 高隔离电压:5000 V rms 增强的系统级 ESD 性能,符合 IEC 61000-4-x 标准 低功耗工作 5 V 工作电压 0 Mbps 至 1 Mbps 时每通道最大值 1.6 mA 10 Mbps 时每通道最大值 3.7 mA 3.3 V 工作电压 0 Mbps 至 1 Mbps 时每通道最大值 1.4 mA 10 Mbps 时每通道最大值 2.4 mA 双向通信 3.3 V/5 V 电平转换 高温工作:125°C 默认低输出 高数据速率:直流至 10 Mbps (NRZ) 精确的时序特性 最大脉冲宽度失真为 3 ns 最大通道间匹配度为 3 ns 高共模瞬变抗扰度:>25 kV/μs 16 引脚 SOIC 宽体封装版本 (RW-16) 16 引脚 SOIC 宽体增强型爬电距离版本 (RI-16) 安全和法规批准(RI-16 封装) UL 认证:5000 V rms,持续 1 分钟,符合 UL 1577 标准 CSA 元件验收通知 5A IEC 60601-1:250 V rms(加强型) IEC 60950-1:400 V rms(加强型) VDE 合格证书 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 V IORM = 846 V 峰值 符合汽车应用要求 应用 通用、高压、多通道隔离 医疗设备 电源 RS-232/RS-422/RS-485 收发器隔离 混合动力电动汽车、电池监视器和电机驱动器 一般描述
特性 高隔离电压:5000 V rms 增强的系统级 ESD 性能,符合 IEC 61000-4-x 标准 低功耗工作 5 V 工作电压 0 Mbps 至 1 Mbps 时每通道最大值 1.6 mA 10 Mbps 时每通道最大值 3.7 mA 3.3 V 工作电压 0 Mbps 至 1 Mbps 时每通道最大值 1.4 mA 10 Mbps 时每通道最大值 2.4 mA 双向通信 3.3 V/5 V 电平转换 高温工作:125°C 默认低输出 高数据速率:直流至 10 Mbps (NRZ) 精确的时序特性 最大脉冲宽度失真为 3 ns 最大通道间匹配度为 3 ns 高共模瞬变抗扰度:>25 kV/μs 16 引脚 SOIC 宽体封装版本 (RW-16) 16 引脚 SOIC 宽体增强型爬电距离版本 (RI-16) 安全和法规批准(RI-16 封装) UL 认证:5000 V rms,持续 1 分钟,符合 UL 1577 标准 CSA 元件验收通知 5A IEC 60601-1:250 V rms(加强型) IEC 60950-1:400 V rms(加强型) VDE 合格证书 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 V IORM = 846 V 峰值 符合汽车应用要求 应用 通用、高压、多通道隔离 医疗设备 电源 RS-232/RS-422/RS-485 收发器隔离 混合动力电动汽车、电池监视器和电机驱动器 一般描述
飞秒激光器由于其独特的特征(例如超短脉冲宽度和极高的峰值强度)开辟了新的材料加工途径,这为将各种材料加工到其他常规激光器提供了卓越的性能[1,2]。具体而言,飞秒激光处理的最重要特征之一是它能够通过抑制受热影响区域(HAZS)的形成,以高质量地进行超高精确的微型和纳米化。飞秒激光器广泛用于商业应用,包括电子,汽车和医疗组件的微加工和修剪;玻璃和蓝宝石基材的涂抹和划分智能手机和显示器;通过纳米结构的Si太阳能电池,硒化铜硅化铜,硒化铜和无机太阳能电池制造抗反射表面;微光发射二极管显示的缺陷修复和边缘切割;和医疗支架的制造。迫切要求提高吞吐量,以进一步加速其商业化和工业应用。可以想象,可以通过增加激光脉冲的强度和/或重复率很容易地增加吞吐量。然而,较高的强度遭受了血浆屏蔽的影响,降低了消融效率,并且由于沉积过量的能量而经常诱导热损害[3]。重复率高于数百kHz会诱导热量积累会产生较大的HAZ,这不适用于高精度或高质量的微分化[4]。他们称此过程消融冷却。这些结果具有ilday的小组最近证明,具有GHz重复率的飞秒激光脉冲的突发可以提高消融效率,如图1 [5]所示。他们声称,在先前的脉冲沉积的残留热量之前,将目标材料从加工区域扩散,以提高消融效率(一阶较高)。他们进一步声称,消融材料的物理去除将消融质量中包含的热能带走,导致高质量消融,没有热效应。
ASSL(高级固态激光器)是国际会议,致力于固态激光器的材料和来源方面的最新进展。材料包括光学,材料科学,凝结物理学和化学方面的进展,与激光和光子学新材料的开发,表征和应用有关。这些包括晶体,玻璃和陶瓷以及功能化的复合材料,从纤维和波导到具有预分配的光学特性的工程结构。相干和高亮度辐射源包括激光器以及泵和非线性设备。重点是科学技术的进步,以提高功率,效率,亮度,稳定性,波长覆盖范围,脉冲宽度,成本,环境影响或其他特定于应用的性能。我们希望读者能喜欢36个顶级文章的这一问题,这些文章强调了该领域的最新状态。我们感谢所有作者和审稿人的出色贡献。,我们还要感谢Optica员工的Carmelita Washington和Rebecca Robinson在整个启动此功能问题以及审查和生产过程中的出色工作。收益媒体是固态激光器的核心,新材料和相应的激光仍然是会议的核心。yb掺杂的材料是这次ASSL会议的重点,这尤其是由于在二极管泵送的YB掺杂激光器30周年的庆祝话题上。Qi等。Qi等。使用Yb:YAG的进步由Cvrček等人报告,在该磁盘几何形状中探索了对SIC的热点[1]。还报告了Yttrium铝硅酸盐纤维的制造,其Yb 3 + Yb:YB陶瓷纳米植物及其在单频纤维激光器中的应用[2]。Wu等人的浓度纤维的平均功率水平继续增加。在输出功率下,从掺杂的YB纤维中展示6.2 kW,光学至光学效率为82%,梁质量系数约为1.9
本文深入探讨了人工智能在合成孔径雷达 (SAR) 技术中的最新进展,重点介绍了欧洲航天局 (ESA) 支持的发展。讨论涵盖了人工智能在 SAR 数据中的应用进展,特别强调了下一代 SAR 有效载荷的机载数字处理功能。先前的 SAR 任务,如 Sentinel-1,在其有效载荷中加入了传感通道,用于校准、特性描述和监控航天器有效载荷。强大的机载处理设备和增加的机载内存为开发认知微波仪器提供了新的可能性,特别是雷达和合成孔径雷达,它们可以在没有地面特定指令的情况下触发自主动作。认知雷达被定义为一种结合了自适应和智能信号处理的系统。在卫星中,示例包括根据监测场景适应操作模式或仪器配置,调整波形参数(如频率、脉冲宽度、脉冲重复间隔、发射功率)直至发射和接收天线方向图或卫星平台的指向。本文重点介绍了与具有机载处理能力的下一代有效载荷的认知雷达应用相关的最新技术突破和持续发展,包括自适应压缩技术的进步、原始雷达数据的目标检测和其他由机器学习实现的技术。此外,它还深入探讨了数字信号处理、数字波束成形和信号处理技术领域的持续研究和开发活动,旨在实现更灵活和自适应的 SAR 有效载荷。这些元素被视为认知系统及其在未来任务中的应用的基石。除了概述当前的技术状况外,本文还探讨了人工智能在 SAR 任务中的潜在未来应用。人工智能与合成孔径雷达系统的结合有望提高合成孔径雷达的性能指标、减少延迟,从而实现地球观测和遥感领域的创新下游应用。
随着电动汽车(EV)的运营寿命终结,其电池保留了巨大的经济价值,并为二人使用和物质回收提供了有希望的机会。这对于全球南部和其他欠发达地区特别有说服力,在这里,可靠的能源存储对于解决弱甚至不存在的电网和能源基础设施所带来的关键挑战至关重要。,尽管存在这种潜力,但围绕第二次生命电池的技术性能,安全性和重新认证的严重不确定性阻碍了广泛的采用。在重新部署它们的情况下,估计和实际性能之间的不匹配通常会使电池在技术上不合适或危险,从而使他们成为打算受益的社区的责任。这种严重的未对准加剧了能源访问差异,并破坏了能源正义的更广泛的愿景,强调了迫切需要强大而可扩展的解决方案以释放潜力。在Pulsebat数据集中,作者测试了464个退休的锂离子电池,涵盖了3种阴极材料类型,6种历史用法,3种物理格式和6种容量设计。对每个第二寿命电池进行重复进行脉冲测试实验,其脉冲宽度,10个脉冲幅度,多重电荷和健康状况,例如,从0.37到1.03(由于不一致而导致的名义容量)。pulsebat数据集的一部分用于自然通信出版物,该出版物解决了在随机分布状态的收费状态下解决了最先进的估计问题1。PulseBat数据集记录了这些测试条件,电压响应以及受注入的脉冲电流约束的温度信号,这些脉冲电流可用作关键诊断任务的宝贵数据资源,例如电荷估计,最新估计,最先进的健康估计,PORTODE材料类型识别,开放式电流电流重新构造,热管理,热管理,以及其他。