3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
薄玻璃切割中的时间空气脉冲效率 Madalin-Stefan Radu、Cristian Sarpe、Elena Ramela Ciobotea、Bastian Zielinski、Radu Constantinescu、Thomas Baumert 和 Camilo Florian* *通讯作者电子邮件:camilo.florian@uni-kassel.de。这是以下文章的预印本:Radu、Madalin-Stefan、Sarpe、Cristian、Ciobotea、Elena Ramela、Zielinski、Bastian、Constantinescu、Radu、Baumert、Thomas 和 Florian、Camilo。 “时间艾里脉冲在薄玻璃切割中的效率” Zeitschrift für Physikalische Chemie,2024 年。最终认证和印刷版本可在线获取:https://doi.org/10.1515/zpch-2024- 0911 超短脉冲激光源是用于微和纳米加工大带隙介电材料的有用工具。这些脉冲的最大优势之一是能够达到高强度峰值,即使在对激光波长透明的材料中也能促进吸收。此外,如果修改脉冲时间分布,能量吸收可以烧蚀直径小、深度大的孔。在这项工作中,我们提出了初步结果,将三种类型的脉冲作为玻璃切割的前体:带宽受限(785 nm 时为 30 fs)、正色散和负色散时间艾里脉冲 (TAP)。所选材料为厚度为 170 μm 的钠钙玻璃,在不同激光能量和扫描速度下,以 1 kHz 的重复率在紧密(50 倍物镜)和松散(20 倍物镜)聚焦条件下进行刻划。激光加工后,使用自制的四点弯曲台通过机械应力对玻璃进行切割。我们分析了三种激光脉冲在表面和横截面上的刻划线质量以及断裂后所需的断裂力。我们报告称,与其他实施的脉冲相比,正 TAP 在玻璃样品上产生了整齐、平整的切割边缘。关键词:玻璃切割;超短脉冲激光;高纵横比结构;激光加工;时间脉冲整形;薄玻璃
使用激光驱动离子束的快速点火惯性聚变能 执行摘要 离子快速点火 (IFI) 或由激光驱动离子束引发的聚变快速点火是实现高增益惯性聚变能 (IFE) 的一条有前途的途径 [1,2]。在 IFI 中,首先使用激光或脉冲功率驱动器组装冷的、致密的氘氚 (DT) 燃料。然后,高功率离子束聚焦到燃料内的一小块体积(热点),迅速将燃料加热到发生聚变点火的状态。该热点中的聚变燃烧会传播到热点周围的燃料,导致该燃料的很大一部分燃尽,并且有可能实现惯性聚变能所需的高增益 (G~100)。IFI 对燃料压缩和点火两个基本元素使用单独的驱动器,从而最大程度地控制和优化每个元素。另一方面,传统的激光聚变使用同一驱动器的多束光束来压缩燃料并对其中心进行冲击加热以点燃燃烧波。尽管传统激光聚变取得了令人瞩目的进展,但高增益和 IFE 所需的精确空间对称性、时间脉冲整形和定时仍然是一项尚未解决的严重挑战。过去二十年来,激光离子加速和聚焦方面取得了重大进展,国家点火装置 (NIF) 上演示的 DT 燃料高密度压缩表明了 IFI 概念的基本可行性。作为一种有前途的补充方法,IFI 是一个值得优先研究的方向,因为它为 IFE 的成功提供了一条替代途径,其风险状况与传统激光驱动聚变不同。然而,它利用并促进了许多相同科学和技术的发展。然而,需要进一步的研发投入来解决 IFI 中的关键技术差距。实现离子快速点火的两种不同方法显而易见:使用通过重入锥聚焦到热点的低 Z 离子,以及使用在胶囊外部产生的高 Z 离子。两者都有优点和缺点,需要通过开发燃料组件和点火的点设计进行检查,同时评估各种权衡(例如激光等离子体不稳定性 (LPI) 风险、效率、稳健性)。这种检查将指导定义关键的把关指标,以证明进一步开发的合理性、核心能力的进一步开发以及关键指标的同时实验演示。引言离子快点火可能是高增益惯性聚变能量生产的可行途径 [1,2]。为了实现 IFI,首先使用传统惯性约束聚变 (ICF) 技术(例如激光驱动压缩(直接或间接驱动)或脉冲功率驱动器)将大量氘氚燃料组装成高密度(~500 g/cm 3)。然后,高流离子束,由一个或多个高强度激光束与转换器靶相互作用产生的激光,被导向燃料内的热点体积,以便等容加热热点燃料(即,没有流体动力学