糖尿病的特征是长期高血糖,是一种慢性代谢疾病。1 2021年全球糖尿病患病率估计为10.5%,预计到2045年增加到12.2%。印度尼西亚是糖尿病病例数量最多的10个国家之一,据报道,全国有1,950万人患有糖尿病。2印尼基本健康研究(Riset Kesehatan Dasar / Riskesdas)发现,大约8.5%的印尼人符合糖尿病的诊断标准。3如果未治疗,糖尿病会对心脏,血管,眼睛,肾脏和神经造成严重的并发症1。在2019年估计全球直接健康成本为7600亿美元,预计到2030年将增加到8250亿美元,4糖尿病是全球经济损失,死亡率和残疾的主要原因之一。经济负担也受到患者的经济负担,糖尿病的护理费用比没有并发症的糖尿病高三倍。微血管并发症的护理成本也是没有并发症的糖尿病护理费用的两倍。这些增加的成本是由于住院延长,口服抗糖尿病药物和胰岛素治疗增加以及更多的门诊就诊。5当前的血糖控制剂主要包括化学剂,例如Biguanides,sulfonylureas和Thiasolidediones,通常会导致各种不良不良事件,包括乳酸酸中毒,体重增加和低血糖症,影响患者的生活质量。8,9 *通讯作者。6,7这些化合物的疗效也随着疾病的进展而降低,需要联合疗法或改用更有效的药物,例如胰岛素,胰岛素的平均价格在近年来飙升。e邮件:sry.suryani@usu.ac.id电话:+62 8116551936引用:Widjaja SS,Rusdiana,Savira M,Jayalie M,Jayalie VF,Dewi M. Basil Leaf提取物对糖尿病的影响:系统审查和荟萃分析。
摘要。由病原体链球菌引起的链球菌病是淡水养殖养殖中的一个严重问题。这项研究旨在使用多草药成分来刺激鱼类免疫系统的改善,以抵抗致病性细菌S. agalactiae的感染。该研究是在FKIP化学实验室,FKP的鱼类孵化场和繁殖实验室以及吉隆坡Syiah Syiah Medicinate的实验室进行的。使用的测试鱼是罗非鱼的长度为7-8 cm。研究方法是使用由5种处理和3种复制组成的完全随机设计进行实验进行的,即A(阴性对照),B(阳性对照),C(添加C. gigantea),D(添加了M. oleivera),E(添加了C. alata L)。使用方差分析对测试结果数据进行分析。与未经浸入提取物中没有浸泡的人相比,在血液参数(白细胞,血红蛋白,血细胞比容)中观察到的血液参数(白细胞,血红蛋白,血细胞比容)中观察到的免疫反应的研究结果表明,免疫反应的增加,血液参数(白细胞,血红蛋白,血细胞比容)和更高的存活率增加。在83.33%的10 ppm叶片叶提取物处理10 ppm时获得了最高的存活率。
前副主任研究(生物学)扩大的鼓励和道德支持,普里亚尼·塞内维拉特(Priyani Seneviratne)博士是不可估量的,她特别感激她。过去的植物病理学家和同事,尤其是C.K.博士Jayasinghe,R。Jayarathne博士,W.P.K。 Silva和K.E.博士 Jayasuriya因了解Hevea橡胶的植物保护活动所做的巨大贡献而受到认可。 O.S.博士的一个特别的感激之情。 Peiris,A。DeS. Liyanage博士和(夫人)N.I.S. liyanage对橡胶种植园行业的重大贡献。 大多数照片是由Priyantha Peiris先生W. Amaratunge先生或植物病理学和微生物学部门的前任工作人员制作的,他们的宝贵投入和服务也得到了承认。 感谢植物病理学和微生物学系的所有工作人员,特别是Dilshari,Champaka,Najith,Nadeeshani和Akila,感谢他们提供的专门且不懈的服务。 创意输入,在整个期间设计页面和专用支持时,由Madushani Lanka女士打算设置,也值得赞赏。Jayasinghe,R。Jayarathne博士,W.P.K。Silva和K.E.博士 Jayasuriya因了解Hevea橡胶的植物保护活动所做的巨大贡献而受到认可。 O.S.博士的一个特别的感激之情。 Peiris,A。DeS. Liyanage博士和(夫人)N.I.S. liyanage对橡胶种植园行业的重大贡献。 大多数照片是由Priyantha Peiris先生W. Amaratunge先生或植物病理学和微生物学部门的前任工作人员制作的,他们的宝贵投入和服务也得到了承认。 感谢植物病理学和微生物学系的所有工作人员,特别是Dilshari,Champaka,Najith,Nadeeshani和Akila,感谢他们提供的专门且不懈的服务。 创意输入,在整个期间设计页面和专用支持时,由Madushani Lanka女士打算设置,也值得赞赏。Silva和K.E.博士Jayasuriya因了解Hevea橡胶的植物保护活动所做的巨大贡献而受到认可。O.S.博士的一个特别的感激之情。Peiris,A。DeS. Liyanage博士和(夫人)N.I.S. liyanage对橡胶种植园行业的重大贡献。 大多数照片是由Priyantha Peiris先生W. Amaratunge先生或植物病理学和微生物学部门的前任工作人员制作的,他们的宝贵投入和服务也得到了承认。 感谢植物病理学和微生物学系的所有工作人员,特别是Dilshari,Champaka,Najith,Nadeeshani和Akila,感谢他们提供的专门且不懈的服务。 创意输入,在整个期间设计页面和专用支持时,由Madushani Lanka女士打算设置,也值得赞赏。Peiris,A。DeS. Liyanage博士和(夫人)N.I.S.liyanage对橡胶种植园行业的重大贡献。大多数照片是由Priyantha Peiris先生W. Amaratunge先生或植物病理学和微生物学部门的前任工作人员制作的,他们的宝贵投入和服务也得到了承认。感谢植物病理学和微生物学系的所有工作人员,特别是Dilshari,Champaka,Najith,Nadeeshani和Akila,感谢他们提供的专门且不懈的服务。创意输入,在整个期间设计页面和专用支持时,由Madushani Lanka女士打算设置,也值得赞赏。
图1 - 周围单核细胞在 +7h至+6天之间浸润海马,并分化为脑单核细胞巨噬细胞。a-d。将氟YG羧酸羧酸盐微球(FYG,0.5μm)注射到SE后尾静脉6H。除非循环单核细胞用克罗膦酸盐脂质体(1 ml/100g; i.p.)在SE之前进行管理。大鼠被牺牲1D,3D和6D。检测CD11b(红色,CBL1512Z,Millipore)和FYG(绿色)在1天(b,cap =毛细血管),脑单核细胞 - 摩托噬细胞浸润单核细胞中,在-Se后3天(C)和细胞在细胞中延伸,并在hilus in-hilus in-hilus in-se(c)和细胞中延长。比例:20 µm。e-n。CD11b(E-I,Cyan,CBL1512Z,Millipore)和CD68(J-N,Green,MCA341GA,Bio-Rad)在SE之后的齿状回中进行了免疫(Ctrl,n = 6; SE+7H,se+7H,n = 4; se+1d,n = 4; se+1d,n = 5; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d; se+1d;比例:50µm。圆形的CD11b-POSI] VE细胞(J)和CD68-POSI] VE细胞(N)在齿状回中被量化。单向方差分析后,通过Tukey的测试对数据进行分析。数据表示为平均值 + SEM。*:vs. Ctrl。***,p <0.001; ****,p <0.0001。
∗ 基金项目 : 科技创新 2030“ 脑科学与类脑研究 ” 重大项目 (2022ZD0208601), 国家自然科学基金 (62076250,62204204), 陕西
抽象背景。全脑脑是罕见的(1/16,000个Livebirths),并且在早期胚胎发生期间发生严重的脑恶性肿瘤。畸形源于缺乏或不完整的前脑分裂,与改变的胚胎模式有关。目标。叙事审查,以识别和评估有关非遗传风险因素的证据。结果。所涉及的基因包括Sonic Hedgehog,锌指蛋白,六个同源物3。具有周围感受性高血糖的植物糖尿病是主要的非遗传危险因素。神经外胚层中氧化应激的增加,特别是神经rest细胞,似乎是主要机制。几种广泛的污染物,包括无机的ARSE-NIC,PFA和PCB,可能会通过改变元素因素(包括脂质和胰岛素)来增加造口前糖尿病的风险。“易感性受试者稀有暴露量”的情况表明,暴露于饮食污染物可能会增加植物前糖尿病的风险,因此在易感胚胎中会增加全脑脑的风险。结论。这种复杂的途径是合理的,值得研究;更重要的是,它突出了评估风险因素以及相关的不确定的重要性,以支持多因素畸形的主要预防策略。
人类社交能力的基础是大脑的人际同步能力。基于实验室的实验性神经心理学研究表明,脑间同步可以通过技术实现。然而,在野外部署这些技术并研究其用户体验方面,人类交互所擅长的领域却还很缺乏。随着移动大脑传感和刺激技术的进步,我们发现人类交互有机会研究野外脑间同步的增强。我们设计了“PsiNet”,这是第一款旨在增强野外脑间同步的可穿戴脑对脑系统。参与者访谈说明了三个主题,描述了调节脑间同步的用户体验:超意识、关系互动和自我消解。我们提出这三个主题来协助人类交互理论家讨论脑间同步体验。我们还为设计脑间同步的人机交互从业者提出了三种实用的设计策略,并希望我们的工作能够指导人机交互未来的脑对脑体验,促进人类之间的联系。
林邦叶(Solanum torvum)含有酚类、黄酮类、三萜类和皂苷类的次生代谢产物化合物。这种次级代谢产物化合物可以在钢表面形成一层保护层,从而发挥腐蚀抑制剂的作用。本研究旨在确定 rimbang 叶提取物在 1 M HCl 介质中作为低碳钢腐蚀抑制剂的能力。使用甲醇溶剂浸渍获得 Rimbang 叶提取物,并使用重量损失法、紫外可见分光光度法、傅里叶变换红外 (FTIR)、原子吸收光谱法 (AAS)、光学显微镜分析和接触角进行测试。根据研究结果,在30℃温度下,当林邦叶提取物浓度为8g/L时,林邦叶提取物的最高抑制效率为91.30%。失重法测量表明,随着萃取物浓度的增加和温度的降低,腐蚀速率降低,缓蚀效率提高。林邦叶提取物的吸附遵循朗缪尔吸附等温线。林邦叶提取物的吸附属于混合型吸附,但根据热力学参数计算的结果,趋向于物理吸附。使用 FTIR 和 UV-Vis 进行的分析表明,rimbang 叶提取物和钢表面之间存在相互作用。使用光学显微镜进行的表面分析表明,添加和不添加 rimbang 叶提取物后,钢材表面的形态存在差异。在 SSA 方法中,HCl 介质中溶解铁的含量随着 rimbang 叶提取物浓度的增加而降低。测量接触角l得出加入萃取液的钢材表面在滴上水后就变得疏水了,从而可以减缓腐蚀反应。