A光学研究所,罗切斯特大学,480 Intercampus Drive,Rochester,纽约州14627,美国B转化神经医学中心,罗切斯特大学医学中心,601 Elmwood Avenue,Rochester,NY 14642,美国纽约市Rochester,Rochester,Robert B.罗切斯特大学视觉科学,纽约州罗切斯特市361 Meliora Hall,美国E E 14627,美国E转化神经医学中心,哥本哈根大学,Blegdamsvej 3B,2200-N,丹麦F电气与计算机工程系,Rochester of Rochester of Rochester of Rochester,500计算机研究大楼,Rochester,Ny 14y ny ny ny ny oci of Rochester of Rochester罗切斯特医疗中心,美国纽约州罗切斯特市601 Elmwood Avenue,美国14642,美国
摘要 - 每年,数以百万计的患者在手术过程中恢复意识,并可能患有创伤后疾病。我们最近表明,可以使用脑电图(EEG)信号的中位神经刺激过程中的运动活动检测来提醒医务人员,患者正在醒来并试图在全身麻醉下移动[1],[2]。在这项工作中,我们测量了直接训练对过滤的EEG数据进行训练的多种深度学习模型(EEGNET,深卷积网络和浅卷积网络)的运动图像的准确性和假阳性。我们将它们与有效的非深度方法进行了比较,即基于常见空间模式的线性判别分析,即应用于协方差矩阵的Riemannian Mean Mean Algorithm的最小距离,基于逻辑回归的逻辑回归,这是基于逻辑回归的,这是对协方差矩阵(TSS+LR)的较相关的空间投影。与其他分类器相比,EEGNET显着提高了分类性能的显着提高(p-值<0.01);此外,它的表现优于最佳的非深度clas-sifier(TS+LR),其精度为7.2%。这种方法有望改善全身麻醉期间术中意识检测。
Azhari, A., Truzzi, A., Neoh, MJ-Y., Balagtas, JPM, Tan, HH, Goh, PP, … Esposito, G. (2020)。婴儿神经影像学研究的十年:我们学到了什么,我们将继续前进吗?婴儿行为与发展,58,101389。https://doi.org/10.1016/j.infbeh.2019.101389 Bagic, AI、Knowlton, RC、Rose, DF、Ebersole, JS 和 ACMEGS 临床实践指南 (CPG) 委员会。(2011)。美国临床脑磁图学会临床实践指南 1:自发性脑活动的记录和分析。临床神经生理学杂志, 28 (4), 348 – 354。https://doi.org/10.1097/WNP。0b013e3182272fed Ballard, A., Le May, S., Khadra, C., Filoa, JL, Charette, S., Charest, M.-C., … Tsimicalis, A. (2017)。分心工具包用于急诊科接受疼痛手术的儿童疼痛管理:一项初步研究。疼痛管理护理, 18 (6), 418 – 426。https://doi. org/10.1016/j.pmn.2017.08.001 Bell, MA, & Cuevas, K. (2012)。使用 EEG 研究认知发展:问题与实践。认知与发展杂志, 13 (3), 281 – 294。https://doi.org/10.1080/15248372.2012。691143 Birg, L., Narayana, S., Rezaie, R., & Papanicolaou, A. (2013)。技术提示:镇静状态下的 MEG 和 EEG。神经诊断杂志, 53 (3), 229 – 240。https://doi.org/10.1080/21646821.2013.11079909 Bosseler, AN, Clarke, M., Tavabi, K., Larson, ED, Hippe, DS, Taulu, S., & Kuhl, PK (2021)。使用脑磁图检查 14 个月大婴儿的单词识别、侧化和未来语言技能。发育认知神经科学,47,100901。https://doi.org/10.1016/j.dcn.2020.100901 Bowyer, SM、Zillgitt, A.、Greenwald, M. 和 Lajiness-O'Neill, R. (2020)。使用脑磁图进行语言映射:临床研究和实践现状更新以及临床实践指南的考虑。临床神经生理学杂志,37 (6),554 – 563。https://doi.org/10.1097/wnp.0000000000000489
图 1:信息子图提取的动机:(a)演示了从群体水平连接组数据中获取边推理矩阵的过程;(b)说明常用的社区检测结果(例如使用随机块模型)无法检测到任何信息子图;(c)显示现有密集子图发现结果的结果;(d)描述了一种理想的信息子图检测程序,该程序可以识别由信息边组成的有组织的、生物学上可解释的拓扑结构。(d)中的结果基于 ADSD 方法(详细信息请参阅结果部分)。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
摘要 — 近年来,脑网络被广泛用于研究脑动力学、脑发育和脑疾病。脑功能网络上的图形表示学习技术有助于发现临床表型和神经退行性疾病的新型生物标志物。然而,当前的图形学习技术在脑网络挖掘方面存在几个问题。首先,大多数当前的图形学习模型都是为无符号图设计的,这阻碍了许多有符号网络数据(例如脑功能网络)的分析。同时,脑网络数据的不足限制了模型在临床表型预测方面的表现。此外,目前的图形学习模型很少是可解释的,可能无法为模型结果提供生物学见解。在这里,我们提出了一个可解释的分层有符号图形表示学习模型来从脑功能网络中提取图形级表示,可用于不同的预测任务。为了进一步提高 17 模型性能,我们还提出了一种新策略来增强功能性脑网络数据以进行对比学习。19 我们使用来自 HCP 和 OASIS 的数据在不同的分类和 20 回归任务上评估了该框架。我们从大量实验中得出的结果证明了所提出的模型与几种最先进的技术相比的优越性。23 此外,我们使用从这些 24 预测任务中得出的图形显着性图来展示对 25 表型生物标志物的检测和解释。26
摘要 — 众所周知,图神经网络 (GNN) 可以有效地对各种领域的网络数据进行建模。然而,在脑网络分析中,GNN 是否能胜过传统的浅层图分类模型(例如图核)仍不清楚。为此,我们分析了建模脑网络的不同方法,包括基于图核的 SVM、基本 GNN 和核化 GNN。这些模型旨在帮助分析疾病和精神障碍,如躁郁症、人类免疫缺陷病毒 (HIV)、创伤后应激障碍 (PTSD) 和抑郁症。具体来说,我们使用三种方法进行实验:核化支持向量机 (SVM)、消息传递图神经网络 (MPGNN) 和核图神经网络 (KerGNN)。我们得出结论:1) 深度模型 (GNN) 通常优于浅层模型 (SVM);2) 考虑特定图形主题的模型似乎并没有显着提高性能。我们还确定了其他图形核和 GNN 框架,这些框架有望推动大脑网络分析的进一步研究。索引词 — 大脑网络、GNN、图形学习、图形核、神经影像数据、SVM
图 1 : AI 带来 OA 功能的重构 ......................................................................................... 3 图 2 :微软发布 Copilot .................................................................................................. 3 图 3 :百度“如流” ........................................................................................................ 3 图 4 : Copilot 根据要求起草邮件 .................................................................................... 4 图 5 : Copilot 提炼邮件内容 ........................................................................................... 4 图 6 : Copilot 对会议内容进行总结并支持提问 .............................................................. 5 图 7 : Copilot 支持会议内容的实时总结和提问 .............................................................. 5 图 8 : Copilot 对客户关注的领域进行扫描 ..................................................................... 5 图 9 : Copilot 根据销售资料提供竞品分析建议 .............................................................. 5 图 10 : Copilot 整理各类资料协作对工作内容进行梳理 ................................................. 6 图 11 : Copilot 为接下来的会议准备相关资料 ................................................................ 6 图 12 :泛微智能办公平台框架图 .................................................................................... 7 图 13 :泛微智能办公平台前端技术 ................................................................................ 7 图 14 :泛微小 e 助手查询业绩 ....................................................................................... 7 图 15 :泛微小 e 助手智能填单 ....................................................................................... 7 图 16 :小致语音助手技术框架 ........................................................................................ 8 图 17 :小致语音助手使用示例 ........................................................................................ 8
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
人脑是神经生物系统的中央枢纽,以复杂的方式控制行为和认知。神经科学和神经影像分析的最新进展表明,人们对大脑感兴趣区域(ROI)之间的相互作用及其对神经发育和疾病诊断的影响越来越感兴趣。作为分析图结构数据的强大深度模型,图神经网络(GNN)已被应用于脑网络分析。然而,训练深度模型需要大量标记数据,由于数据获取的复杂性和共享限制,这些数据在脑网络数据集中往往很少。为了充分利用可用的训练数据,我们提出了 PTGB,这是一个 GNN 预训练框架,它可以捕捉内在的脑网络结构,而不管临床结果如何,并且很容易适应各种下游任务。 PTGB 包含两个关键组件:(1)专为大脑网络设计的无监督预训练技术,能够从没有特定任务标签的大规模数据集中学习;(2)数据驱动的分区图谱映射管道,可促进具有不同 ROI 系统的数据集之间的知识转移。使用各种 GNN 模型进行的广泛评估表明,与基线方法相比,PTGB 具有稳健且卓越的性能。