机器学习是人工智能的一部分,涉及开发算法,使计算机可以根据数据学习和进行预测。与传统的编程不同,在为每个任务编码特定的说明时,ML算法确定数据中的模式并随着时间的推移提高其性能。此功能对于从自然语言处理和图像识别到自动驾驶汽车和预测分析的应用至关重要。应用数学在此过程中起着至关重要的作用,提供了开发,分析和优化ML算法所需的工具和框架。从线性代数和微积分到概率和优化,数学概念是理解和推进机器学习技术不可或缺的[1]。
大脑的复杂组织从神经元内的分子级过程到大型网络,因此必须了解这种多尺度结构以发现大脑功能并解决神经系统疾病至关重要。多尺寸的大脑建模已成为一种变革性方法,将计算模型,高级成像和大数据集成以弥合这些组织水平。本评论探讨了将微观现象与宏观大脑功能联系起来的挑战和机遇,并强调了推动领域进步的方法。它还强调了多尺度模型的临床潜力,包括它们在推进人工智能(AI)应用程序和改进医疗保健技术中的作用。通过检查当前的研究并提出了跨学科合作的未来方向,这项工作展示了多尺度大脑建模如何彻底改变科学的理解和临床实践。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
摘要 ◥ 目的:PNOC003 是一项针对新诊断为弥漫性内在性脑桥神经胶质瘤 (DIPG) 的儿童和年轻人的多中心精准医学试验。患者和方法:根据符合 DIPG 的影像学表现招募患者 (3 – 25 岁)。收集活检组织进行全外显子组和 mRNA 测序。放射治疗 (RT) 后,根据分子肿瘤委员会的建议,患者被分配最多四种 FDA 批准的药物。纵向测量 H3K27M 突变型循环肿瘤 DNA (ctDNA)。使用全基因组测序和 DNA 甲基化分析来表征肿瘤组织和匹配的原代细胞系。在适用的情况下,在来自儿童脑肿瘤网络 (CBTN) 的独立队列中验证结果。结果:在招募的 38 名患者中,有 28 名患者 (中位数年龄 6 岁,10 名女性) 接受了分子肿瘤委员会的审查。其中 19
神经振荡,自发发生以及大脑从事任务的振荡活动的节奏模式,在功能网络内部和跨功能网络的神经交流中起着至关重要的作用。在感觉运动网络中,MU(8-13 Hz)中的振荡,β(13.5-25 Hz)和γ(30-90 Hz)频率范围通常会锁定为运动开始时,并且在逐渐振幅(desynchroncrization)中逐渐降低(ERNCHRONING)(ERCHRORINCER)(ERCHRORCH)(ERCHRORCH)(ERCHRORCH)(ERNCHRORIAN)的特征(ERNCHRORINCER)(ERNCH)(ERNCRORIN)(ERNCRORINCERNINCERRORN)(ERNCRORCH)(EVENTRORIN)(EVENTRORIN)。尽管他们的功能作用仍在争论中,但MU,Beta和γ振荡在几种神经精神病学条件下发生了改变(Peter等,2022),并被认为与感觉运动控制,学习和可塑性有关(Pfurtscheller and Lopes da Silva da Silva,1999; 1999; Engel and Frard; ghillies; ghillies; ghillies;该研究主题展示了有关皮质振荡在运动控制和学习中的作用以及这种知识的转化适用性的研究。它包含涉及实验和方法研究和文献综述的五篇文章。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
图S10。 建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。 PMCAO手术程序。 CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。 用biorender.com创建的数字。 b TTC染色大脑的代表性照片。 白色区域代表PMCAO的梗塞区域。 PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。 数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。 误差条表示平均值±S.D. (n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。 缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。图S10。建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。PMCAO手术程序。CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。用biorender.com创建的数字。b TTC染色大脑的代表性照片。白色区域代表PMCAO的梗塞区域。PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。误差条表示平均值±S.D.(n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。