图S10。 建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。 PMCAO手术程序。 CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。 用biorender.com创建的数字。 b TTC染色大脑的代表性照片。 白色区域代表PMCAO的梗塞区域。 PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。 数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。 误差条表示平均值±S.D. (n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。 缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。图S10。建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。PMCAO手术程序。CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。用biorender.com创建的数字。b TTC染色大脑的代表性照片。白色区域代表PMCAO的梗塞区域。PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。误差条表示平均值±S.D.(n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。
全脑脑是复杂的大脑畸形,这是由于早期胎儿发育过程中大脑不完全的裂解而导致的。这种情况的特征在于普罗德龙(胚胎的前脑)的失败,以正确分成大脑半球的双叶,导致影响大脑和面部特征的异常。根据大脑分裂的严重程度,全脑脑分为四种类型:Alobar Holoporsencephaly:最严重的形式,其中没有脑半球分离,导致单个脑室心室和一个单裂脑。半月骨全脑脑:大脑半球部分分离,大脑的结构在某种程度上介于Alobar和Lobar之间。Lobar Holoporsencephaly:最少的严重形式,具有更好的脑半球分离和更正常的大脑结构。中半球间变体(syntelcephaly):半球在大脑中间没有分离,但可能在前和后方面更正常地分裂。是什么导致全脑脑?
摘要:由于脑肿瘤形状不规则且弥散,因此在磁共振成像 (MRI) 体积中对其进行分割非常困难。最近,由于标记数据集的可用性,二维和三维深度神经网络已成为医学图像分割的热门选择。然而,三维网络的计算成本很高,需要大量的训练资源。这项研究提出了一种用于脑肿瘤分割的三维深度学习模型,该模型使用轻量级特征提取模块来提高性能,而不会影响上下文信息或准确性。所提出的模型称为基于混合注意的残差 Unet (HA-RUnet),它基于 Unet 架构,利用残差块从 MRI 体积中提取低级和高级特征。注意和挤压激励 (SE) 模块也被集成在不同级别,以在局部和全局感受野内自适应地学习注意感知特征。所提出的模型在 BraTS-2020 数据集上进行了训练,在测试数据集上,Dice 得分分别为 0.867、0.813 和 0.787,对整体肿瘤、肿瘤核心和增强肿瘤的灵敏度分别为 0.93、0.88 和 0.83。实验结果表明,所提出的 HA-RUnet 模型优于 ResUnet 和 AResUnet 基础模型,同时参数数量少于其他最先进的模型。总体而言,所提出的 HA-RUnet 模型可以提高脑肿瘤分割准确率,并有助于医生进行适当的诊断和治疗计划。
摘要 —近年来,深度神经网络在医学成像中的各种识别和分割任务中取得了最佳性能,包括脑肿瘤分割。我们发现,分割脑肿瘤面临着数据不平衡的问题,即属于背景类(非肿瘤像素)的像素数量远大于属于前景类(肿瘤像素)的像素数量。为了解决这个问题,我们提出了一个级联结构的多任务网络。我们的模型包含两个目标,即(i)有效区分脑肿瘤区域和(ii)估计脑肿瘤掩模。第一个目标由我们提出的上下文脑肿瘤检测网络执行,该网络起到注意力门的作用,只关注脑肿瘤周围的区域,而忽略与肿瘤相关性较小的远邻背景。与处理每个像素的其他现有物体检测网络不同,我们的上下文脑肿瘤检测网络只处理真实实例周围的上下文区域,这种策略旨在产生有意义的区域提议。第二个目标建立在 3D 空洞残差网络和编码解码网络之下,以便有效地分割大物体和小物体(脑肿瘤)。我们的 3D 空洞残差网络采用跳跃连接设计,使深层的梯度能够直接传播到浅层,从而保留不同深度的特征并用于相互细化。为了从体积 MRI 数据中整合更大的上下文信息,我们的网络利用具有各种内核大小的 3D 空洞卷积,从而扩大了滤波器的感受野。我们提出的网络已经在包括 BRATS2015、BRATS2017 和 BRATS2018 数据集在内的各种数据集上进行了评估,包括验证集和测试集。我们的性能已通过基于区域的指标和基于表面的指标进行了基准测试。我们还与最先进的方法进行了比较。1
CALSTART 开发了一个财务模型,使用行业合作伙伴提供的合理衰减率逐个评估 BET 组件的 RV。根据该模型,当考虑组件转售价值时,BET 的 RV 预期值会很高,尤其是在卡车使用寿命的后期,但在典型融资期的早期也是如此。具体而言,到第 5 年,建模的 BET 组件合计可保留卡车初始价值的 15-25%——这比贷方在其当前承保流程中使用的前景要好。这种 RV 保留率与柴油卡车的 RV 保留率接近,约为 30%,并且随着 BET 继续变得更具成本效益并受到法规的青睐,未来可能会下降。此外,由于电池在二次使用期间具有持续价值,因此在第 8 年后,BET 保留的 RV 比柴油卡车更高。这个基于 BET 组件转售的 RV 基准得到了众多电池二次生命公司的创新市场活动的支持,例如 Zenobē 和 Connected Energy,他们正在利用到 2030 年二手电动汽车电池供应所带来的 20 至 25 亿美元的机会。
目的:在本文中,我们将持续探索脑机接口 (BCI) 的脑信号类型,并探索脑信号分析深度学习的相关概念。我们讨论在检测阿尔茨海默病 (AD)、脑瘤等两种脑部疾病方面的最新机器学习方法。此外,还简要概述了用于表征脑部疾病的各种标记提取技术。项目工作,由图像共振信息支持的肿瘤分类自动化工具。它由 ResNet Squeeze 的各种卷积神经网络 (CNN) 样本提供。目标:本文旨在使用深度学习概念分析脑部疾病的分类和预测。深度学习是计算机科学中的一组机器学习,其网络能够从非结构化或未标记的数据中进行无人值守的学习。也称为深度神经学习,是模仿人类大脑处理数据以用于物体检测、语音识别、语言翻译和呼叫的 AI 操作。方法论:为了通过测量输入句子中的语义来测试结果,可以创建具有相同值的嵌入向量。在这种情况下,使用具有不同含义的句子。由于很难收集大量标记数据,因此它模拟了其他句子中的信号。随着您的进步,使用来自前几层的共享输出的层来训练更复杂的功能。我们研究了深度学习方法的类型:带有 RNN 的 LSTM 模型、CNN 结果。CNN 是一个多层前馈神经网络。设备权重通过反向传播误差过程更新。记录 d 中时间段 t 的 TF-IDF。与传统的摘要模型不同,前向工程功能基于对所需记录域的理解。此外,该框架与人工缩写有关,然后可以使用人工缩写来推迟手动功能开发和记录标记的影响。结果:我们将跟踪这个 257 个因素的选择作为向量输入分类算法。它是以下形式的集合,包括输入层、卷积层、线性单元 (ReLU) 层、池化层、全耦合层。循环神经网络 (RNN) 是一种神经网络,它定义循环单元之间的连接。这创建了一个允许的内部网络区域。特征选择是一种广泛使用的方法,可以提高分类器的性能。在这里,我们研究了传统美容火灾与基于相关性的个性化选择的影响。原创性:使用带有 ResNet Squeeze 的深度 CNN 进行计算机分类和预测的方法分析脑部疾病。
文学回顾过去的思维(2015年前)Crick [5]断言,科学家在所谓的计算机时代的早期以不同的方式使用了机器和大脑。一种意见是使计算机尽可能聪明。该地区后来被称为人工智能(AI,John Carthy,计算机科学家,1956年)。看来,那些专注于探索大脑互连规则的人做出了最重要的贡献。一种“神经元代数” [6-8]。尽管产生了感官处理的层次视图的电子版本,但在1950年代末,当Boden确定计算机程序实际上可以建模相当复杂的感觉过程,并且该程序的功能可能会随着时间的推移而改变。当前对物体的澄清是该开发工作的直接结果。一个重大突破。看来,后来的模型可以更好地解释了人脑的工作原理,包括真实机制的启示。尽管在人工场景分析等领域的计算机面部识别和发展方面取得了巨大进展,但被称为机器视觉的领域仍需要更多地赶上人们头脑中发生的情况。
脑对脑接口 (BBI) 是一种通过神经成像和神经调节技术的组合促进两个大脑之间直接信息传输的系统。这些系统可以根据另一个用户的神经信号刺激一个用户的大脑。虽然脑机接口经常在人机交互 (HCI) 游戏和游戏社区中讨论,但 BBI 尚未得到充分探索。在本文中,我们通过提出三种类型的“心灵感应游戏体验”来研究 BBI 系统的社交游戏潜力,这些体验基于我们在之前的研究中设计、设计和评估的可穿戴 BBI 系统“PsiNet”。该系统通过脑电图 (EEG) 作为系统输入来测量玩家的神经活动,并使用经颅电刺激 (tES) 作为系统输出来刺激其他用户的相关大脑活动。我们希望这项工作能够激励游戏设计研究人员使用 BBI 系统等神经技术创造新颖的游戏体验。
• 儿童障碍性疾病( Childhood Disorder ) :了解自 闭 症( Autism )、注意缺陷多 动 障碍 ( Attention Deficit Hyperactivity Disorder )、唐氏 综 合症( Down Syndrome )、 阅读 障碍 ( Dyslexia )等疾病的症状、成因、治 疗 • 上 瘾 ( Addiction ) : 了解上 瘾 的生理机制; * 导 致上 瘾 的常 见药 品及其引 发 的症状和治 疗 方式, 包括酒精( Alcohol )、尼古丁( Nicotine )、大麻( Marijuana )、 鸦 片( Opiates )、 兴奋剂 ( Psychostimulants )等;探索行 为上瘾(如网络游戏等)的成因及防治方式 • 退行性疾病( Degenerative Disease) :了解阿 兹 海默症( Alzheimer's Disease )、肌萎 缩侧 索硬化 症( Amyotrophic Lateral Sclerosis, ALS )、亨廷 顿综合症( Huntington's Disease )、帕金森症 ( Parkinson's Disease )的症状、成因和治 疗 • 精神疾病( Psychiatry ):了解焦 虑 症( Anxiety Disorders )、妥瑞氏 综 合症( Tourette Syndrome )、抑郁症( Depression )、躁郁症 ( Bipolar Disease )、精神分裂症 ( Schizophrenia )的症状、成因和治 疗 • 脑损伤( Illness and Injury ): 了解 疼痛 ( Pain )、 癫痫 ( Epilepsy )、中 风 ( Stroke )、 * 脑 瘤 ( Brain Tumors )、 * 多 发 性硬化( Multiple Sclerosis )、 * 神 经创伤 ( Neurological Trauma )的症 状、成因和治 疗 方式 • 脑疾病相关的公共医学:探索如何宣传普及脑疾病预防知识、推动社会对脑疾病患者的关注等 四、 脑研究及技术等
摘 要 : 目的:本研究旨在明确枳椇果梗多糖( HDPs )对酒精暴露所致的小鼠神经行为异常的改善效果,并探究谷 氨酸代谢和紧密连接蛋白表达在其中的作用。方法:雄性 C57BL/6 小鼠按 114 μL/20 g 剂量连续酒精灌胃 14 d ,建 立酒精暴露模型,同时设置干预组进行 HDPs 干预( 114 μL/20 g 酒精 +100 mg/kg HDPs )。应用行为学实验(旷场 实验、高架十字迷宫实验)评估神经行为学变化,采用气相色谱法测定小鼠血液中乙醇浓度, γ -H2AX 荧光检测小 鼠脑海马组织 DNA 损伤,免疫组化分析检测小鼠脑组织中紧密连接蛋白 Claudin-1 和 ZO-1 的表达,并通过超高 效液相色谱 - 四级杆飞行时间质谱法( UPLC-Q-TOF-MS )代谢组学技术对小鼠脑组织代谢物进行分析。结果: HDPs 可有效降低酒精暴露小鼠血液乙醇浓度,由 4.69±0.29 g/L 降至 1.64±0.104 g/L ;改善酒精暴露所致的小鼠神 经行为异常,旷场实验中,与酒精组相比, HDPs 干预组总路程显着提升至 27340±3304 cm ( P <0.05 ),平均速度 显着提升至 67.4±13.4 cm/s ( P <0.05 ),不动时间缩短 29% ( P <0.05 );高架十字迷宫实验中,与酒精组相比, HDPs 干预组闭臂停留时间显着减少至 195.6±10.3 s ( P <0.05 ),开放臂进入次数显着增加 26% ( P <0.05 ));还 可降低酒精诱导的脑组织氧化应激与 DNA 损伤水平, ROS 、 MDA 分别降低 5.4% 、 29.5% ( P <0.05 ), T-AOC 提 高 10.9% ,上调脑海马组织中 Claudin-1 ( 2.2 倍)和 ZO-1 ( 0.1 倍)蛋白的表达;并调节脑组织谷氨酸代谢通路, 提高甘氨酸( 19.7% )、谷光甘肽( 25% )、琥珀酸( 22.6% )等代谢物水平。结论: HDPs 可有效改善酒精对小鼠 神经行为的影响,其机制或可能通过抗氧化、保护紧密连接蛋白和调节谷氨酸代谢通路发挥作用,研究结果可为 扩展枳椇资源在食品领域中的应用提供理论依据。