•您的孩子是否经常头痛,还是他/她无法像往常一样集中精力?请您的孩子的老师密切关注这一点。您的孩子在上课期间或在育儿期间可能需要额外关注。•在事故发生后的前2周内,对您的孩子来说,避免某些运动是个好主意:孩子可以击中自己的运动或发起其他头痛的运动,例如足球或其他棒球运动或武术。2周后,如果您的孩子有自己的感觉,您的孩子可以逐渐开始参加运动。•18岁以下的儿童可能不会喝酒。,当然不是在打击或跌倒后的第一天。酒精和药物会引起嗜睡。因此,不再有可能控制这是由于头部打击还是由于酒精或药物的影响。
摘要:当前关于癫痫的复杂网络研究大多采用脑电图直接构建静态复杂网络进行分析,忽略了其动态特征。本研究采用滑动窗口法对儿童癫痫患者与儿童对照组睡眠状态下的脑电图构建动态复杂网络,提取动态特征并结合到各类机器学习分类器中探究其分类性能,并比较了静态与动态复杂网络的分类性能。在单变量分析中,静态复杂网络中原本不显著的拓扑特征在动态复杂网络中可以转化为显著特征。在大多数导联间连通性计算方法下,利用动态复杂网络特征进行判别的准确率均高于静态复杂网络特征。特别是在全频段下的相干函数虚部(iCOH)方法中,大多数机器学习分类器的判别准确率均高于95%,且在较高频段(β频段)和全频段的判别准确率高于较低频段。与使用静态复杂网络特征相比,我们提出的方法和框架可以有效地概括脑电信号中更多的时变特征,从而提高机器学习分类器的判别准确率。
1 型糖尿病 (T1D) 患者使用混合闭环系统的情况在过去几十年中从未见过。1 然而,Ebekozien 等人最近发表的文章显示,35% 的 T1D 患者使用混合闭环系统,这在 2 型糖尿病 (T2D) 患者中极为罕见。这些数字在国外甚至更低
•心脏肌肉(心肌炎)的炎症或心脏外衬里的炎症(心包炎)可能导致呼吸困难,呼吸症或胸痛•脸部肿胀•脸部肿胀的大量肿胀(脸部肿胀(脸部肿胀)可能会在患者中发生均可能发生的副作用。可能会发生严重和意外的副作用。在临床试验中仍在研究疫苗的可能副作用。如何管理副作用?大多数副作用是轻度或中等效果,并且在出现的几天内就消失了。如果疼痛和/或发烧等副作用很麻烦,则可以通过药物治疗疼痛和发烧,例如扑热息痛。如果您的经历严重过敏反应,请去最近的医院。如果您有任何副作用困扰或不消失,请致电疫苗接种提供者或您的医疗保健提供者。
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
摘要 目的。本研究旨在通过优化基于整体和频谱大脑动力学特征的预测多元模型,阐明在视觉引导的等长收缩任务中维持恒定力量水平背后的大脑动力学。方法。18 名受试者被要求按压灯泡并保持恒定的力量水平(屏幕上的条形图显示),并获取脑电图 (EEG)。对于 500 毫秒的间隔,我们计算了力量稳定性指数以及大脑动力学指数:微状态指标(持续时间、发生率、整体解释方差、方向优势)和 θ、低 alpha、高 alpha 和 beta 波段的 EEG 频谱幅度。我们优化了一个多元回归模型(偏最小二乘 (PLS)),其中微状态特征和频谱幅度是输入变量,力量稳定性指数是输出变量。使用 PLS 嵌套交叉验证方法解决了输入变量之间的共线性和模型的普遍性相关问题。主要结果。优化的 PLS 回归模型达到了良好的普遍性,并成功显示了微状态和光谱特征在推断施加力的稳定性方面的预测价值。与视觉和执行控制网络相关的微状态持续时间越长、发生率越高,收缩性能就越好,这与视觉系统和执行控制网络在视觉运动整合中所起的作用一致。意义。微状态指标和脑节律幅度的组合不仅可以在群体层面,而且在个体层面被视为稳定的视觉引导运动输出的生物标志物。我们的研究结果可能对更好地理解单次试验或实时应用中的运动控制以及运动控制研究发挥重要作用。
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
离子电扩散和水运动的数学建模正在成为一种强有力的研究途径,为大脑稳态提供新的生理学见解。然而,为了提供可靠的答案和解决争议,预测的准确性至关重要。离子电扩散模型通常包括非线性和高度耦合的偏微分方程和常微分方程的非平凡系统,这些方程控制着不同时间尺度上的现象。在这里,我们研究与近似这些系统相关的数值挑战。我们考虑了一个脑组织电扩散和渗透的均质模型,并提出和评估了不同的相关有限元分裂方案的数值特性,包括理想场景和皮质扩散抑制 (CSD) 的生理相关设置的准确性、收敛性和计算效率。我们发现,对于具有平滑制造解决方案的问题,这些方案在空间中显示出最佳收敛率。然而,生理 CSD 设置具有挑战性:我们发现 CSD 波特性(波速和波宽)的精确计算需要非常精细的空间和精细的时间分辨率。
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。
摘要。目的:本研究的创新之处在于探索了多种脑电波信号数据预处理的新方法,其中提取统计特征,然后根据降维算法选择它们的顺序将其格式化为视觉图像。然后,这些数据被处理为 2D 和 3D CNN 的视觉输入,然后进一步提取“特征的特征”。方法:从三个脑电图数据集得出的统计特征在视觉空间中呈现,并分别在 2D 和 3D 空间中处理为像素和体素。对三个数据集进行了基准测试,即来自四个 TP9、AF7、AF8 和 TP10 10-20 电极的心理注意力状态和情绪价以及来自 64 个电极的眼睛状态数据。通过三种选择方法选择了 729 个特征,以便从相同的数据集中形成 27x27 图像和 9x9x9 立方体。为 2D 和 3D 预处理表示而设计的 CNN 学习从数据中卷积有用的图形特征。主要结果:70/30 分割方法表明,在 2D 中,特征选择分类准确度最高的方法是注意力状态的单一规则和情绪状态的相对熵。在眼部状态数据集中,3D 空间最佳,由对称不确定性选择。最后,使用 10 倍交叉验证来训练最佳拓扑。最终最佳 10 倍结果是注意力状态(2D CNN)97.03%,情绪状态(3D CNN)98.4%,眼部状态(3D CNN)97.96%。意义:本研究提出的框架的结果表明,CNN 可以成功地从一组预先计算的原始 EEG 波的统计时间特征中卷积出有用的特征。 K 折验证算法的高性能表明,除了预先计算的特征之外,CNN 学习到的特征还包含对分类有用的知识。