用于运动障碍康复的脑机接口 (BCI) 利用脑电图 (EEG) 中的感觉运动节律 (SMR)。然而,支撑 SMR 的神经生理过程往往随时间和受试者的不同而变化。固有的受试者内和受试者间变异性导致数据分布的协变量偏移,从而阻碍模型参数在会话/受试者之间的可转移性。迁移学习包括基于机器学习的方法,用于补偿受试者间和会话间 (受试者内) 变异性,这些变异性表现在 EEG 衍生的特征分布中,作为 BCI 的协变量偏移。除了迁移学习方法外,最近的研究还探索了心理和神经生理预测因子以及受试者间联想性评估,这可能会增强基于 EEG 的 BCI 中的迁移学习。在这里,我们强调了测量会话间/受试者表现预测因子对于正常人和运动障碍人士的广义 BCI 框架的重要性,从而减少了繁琐和烦人的校准会话和 BCI 训练的必要性。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于6月29日,2021年。 https://doi.org/10.1101/2021.06.28.448432 doi:biorxiv preprint
类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
1 Rise-Health,医学科学系,健康科学学院,贝拉大学内政部,AV。Infante D. Henrique,6200-506Covilhã,葡萄牙2 CNC -UC- COIMBRA大学神经科学与细胞生物学中心3 CIBB 3 CIBB- COIMBRA大学Innovative Biomedicine for Innovative Biomedicine in Center of Coimbra University,Coimbra University,Coimbra University of Coimbra 4 Cryastaminal,Cryastaminal,Sathlababababal s.a.,Portugal
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
图 4 凝视运动。 (a) 三种模式下参与者目光注视的示例。屏幕上显示 16 个字母数字字符,由 4×4 矩阵表示。每次试验在 16 个字符中有一个、三个或五个目标与声音呈现的单词相匹配。在单人模式下,屏幕上显示的红色圆圈表示参与者的注视点。在合作和竞争模式下,屏幕上两位参与者的注视点以红色和绿色圆圈区分。 (b) 单次试验中观察到的参与者扫描路径和注视热图的示例。虚线框在实验期间不可见,标记了目标的位置。请注意,观察者的注视点在实验期间不可见。 (c) 40 次试验的注视热图。 (d) 两位参与者眼动追踪热图之间的相似性。每个小提琴图(透明色)上都叠加了一个箱线图,显示了相似性度量的分布,包括单一、合作和竞争模式下的 Pearson's r、结构相似性指数度量 (SSIM) 和 Jaccard 相似性系数。黑色星号和线分别表示相似性的平均值和中位数。使用重复测量方差分析确定任务模式之间相似性的显著差异。
科学界正在探索脑电图 (EEG) 与个人信息之间的关联。尽管使用 EEG 进行身份识别对研究人员来说很有吸引力,但是感知的复杂性限制了此类技术在实际应用中的使用。在这项研究中,通过降低脑信号采集和分析过程的复杂性解决了这一难题。这是通过减少电极数量来实现的,在不影响准确性的情况下简化了关键任务。事件相关电位 (ERP),又称时间锁定刺激,用于从每个受试者的头部收集数据。在放松一段时间后,向每个受试者直观地呈现一个随机的四位数字,然后要求他们思考 10 秒。对每个受试者进行了 15 次试验,在每个心理回忆片段之前都有放松和视觉刺激阶段。我们引入了一个新颖的派生特征,称为半球间振幅比 (IHAR),它表示横向对应电极对的振幅比。该特征是在使用信号增强技术扩展训练集后提取的,并使用多种机器学习 (ML) 算法进行测试,包括线性判别分析 (LDA)、支持向量机 (SVM) 和 k-最近邻 (kNN)。大多数 ML 算法在 14 个电极的情况下显示 100% 的准确率,根据我们的结果,使用更少的电极也可以实现完美的准确率。然而,AF3、AF4、F7 和 F8 电极组合与 kNN 分类器产生了 99.0 ± 0.8% 的测试准确率,是人员识别的最佳选择,既保持了用户友好性又保持了性能。令人惊讶的是,放松阶段表现出三个阶段中最高的准确率。
如果您位于美国、波多黎各联邦和美属维尔京群岛(以下简称“BlueCard 服务区”)之外,在获取承保的医疗保健服务时,您可能能够利用 Blue Cross Blue Shield Global® Core。Blue Cross Blue Shield Global® Core 在某些方面与 BlueCard 服务区提供的 BlueCard 计划不同。例如,尽管 Blue Cross Blue Shield Global® Core 可帮助您访问住院、门诊和专业医疗服务提供者网络,但该网络并非由 Host Blue 提供服务。因此,当您从 BlueCard 服务区以外的医疗服务提供者处接受护理时,您通常必须向医疗服务提供者付款并自行提交索赔才能获得这些服务的报销。