果蝇被广泛用作所有生物医学研究领域的模型生物。在神经科学领域,人们利用这种小果蝇获得了大量信息,包括识别调节行为的神经回路、揭示其遗传基础以及所涉及的分子机制。尽管有大量遗传工具可用于操纵和推断神经元活动,但对果蝇神经元电特性的直接测量却落后了。这是因为在果蝇中枢神经元等小细胞中进行电记录非常复杂。膜片钳技术提供了直接测量果蝇神经元电特性的独特可能性。此分步方案提供了掌握此技术的详细建议。
可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
膜片钳设备 ................................................................................................180 - 183 双层工作站 完整的双层工作站 ..............................................................................................184 双层工作站组件列表 ..............................................................................................185 双层钳放大器,BC-535 ......................................................................................186 - 187 法拉第笼,FC 系列 ......................................................................................................188 双层腔室和比色皿,BCH-M13 和 BCH-M22 .............................................................189 灌注模型 BCH-P 双层腔室 .............................................................................................190 BPS-2 和 LPF-8 双层灌注系统 .............................................................................191 LPF-8 贝塞尔滤波器 .............................................................................................................191 SUNStir-3(SUNStir 控制器、SUN-1 灯和 SPIN-2 搅拌板) ................................................................................................................192 - 193 RAC-14 仪器架................................................................................................194 BLM 入门套件 ......................................................................................................194 HST-1 MBB 头部载物台支架 ................................................................................194 BLM-TC Bilaye
摘要 目的:Nfix 是属于核因子 I (NFI) 家族的转录因子,该家族由四个成员 (Nfia、b、c、x) 组成。Nfix 在多种器官的发育和功能中发挥着重要作用。在肌肉发育过程中,Nfix 通过促进快肌纤维控制从胚胎到胎儿的肌肉生成。在成人肌肉中,受伤后,Nfix 的缺乏会损害再生,导致慢肌纤维含量增加。Nfix 也在心脏中表达,但其功能此前从未被研究过。我们研究了 Nfix 在这个器官中的作用。方法:使用 Nfix 缺陷型和野生型 (WT) 小鼠,我们分析了:(1) 通过 qPCR 分析发育过程中 Nfix 的表达模式;(2) 通过体内遥测和体外膜片钳分析其缺失引起的功能改变。
生物电界面连接各种长度尺度上的材料和生物系统,从亚细胞尺寸到组织和器官水平。近几十年来,界面的发展取得了显著增长。自 21 世纪初以来,该领域已从膜片钳、微电极阵列 (MEA) 和场效应晶体管 (FET) 发展到基于微创、超小型和生物相容性纳米材料的传感和调制技术 1–3 。到目前为止,研究一直在利用具有合理设备结构和高效制造方法的纳米级导电材料来开发神经科学、心血管疾病研究、微生物相关能源系统和许多其他不断扩展的领域的新应用 4–9 。半导体、碳、金属及其复合材料和氧化物是用于界面的材料,可催化深部脑刺激器、视网膜假体、植入式人工起搏器和微生物燃料电池的开发以及个性化医疗的探索取得重大进展 10–14 。这些发展增强了更好地理解细胞、组织和器官系统内和之间复杂的电生理生物过程的能力。
3 月 3 日星期日下午 5:30 – 7:00 303 室 ELEMENTS SRL 适用于电生理学和纳米孔应用的便携式经济高效的低噪声放大器 超便携式且经济高效的放大器技术现已成为现实,任何电生理学研究实验室都可以使用,这要归功于 Elements 基于微电子的定制微芯片 (ASIC) 设计,它使用标准和低成本的 CMOS 工艺。Elements 提供一种一体化固态解决方案来测量皮安 (10-12 pA) 范围内的电流,带宽高达数百 kHz,具有非常低的噪声记录、通过内部模数转换器实现信号数字化、信号发生器、数字数据处理和 USB 供电等特点,所有这些都包含在一个微小的外形中(即 42x18x78 毫米)或大约一台傻瓜数码相机的大小!在本次演讲中,我们将展示我们最新的电生理学产品、世界上最小的集成膜片钳放大器,以及使用一次性玻璃纳米孔芯片进行蛋白质检测的便携式纳米孔试剂盒。活动期间将展示以下两个用例:
电压门控钾通道在多种癌细胞(包括肺癌细胞)的细胞过程中发挥作用。我们前期鉴定并报道了一种来自印鼠客蚤唾液蛋白FS48,在HEK 293T细胞中检测时,其对K v 1.1-1.3通道表现出抑制活性。但FS48是否对表达K v 通道的癌细胞有抑制作用尚不清楚。本研究旨在通过膜片钳、MTT、划痕愈合、transwell、明胶酶谱、qRT-PCR和WB检测方法揭示FS48对K v 通道和NCI-H460人肺癌细胞的影响。结果表明,FS48虽然不能抑制NCI-H460细胞的增殖,但能以剂量依赖性方式有效抑制K v 电流、迁移和侵袭。此外,发现K v 1.1和K v 1.3 mRNA和蛋白质的表达显著降低。最后,FS48降低了MMP-9的mRNA水平,同时增加了TIMP-1的mRNA水平。本研究首次揭示了吸血节肢动物唾液衍生蛋白可以通过K v 通道抑制肿瘤细胞的生理活动。此外,FS48可以作为针对表达K v 通道的肿瘤细胞的靶向化合物。
利培酮等非典型抗精神病药物会导致药物性代谢综合征。然而,其潜在机制在很大程度上仍不清楚。在这里,我们报告了一种新的小鼠模型,该模型可以可靠地重现利培酮引起的体重增加、肥胖和葡萄糖不耐受。我们发现利培酮治疗会急剧改变 C57BL/6 小鼠的能量平衡,并且暴食症是体重增加的主要原因。利培酮喂养小鼠下丘脑的转录组分析表明,利培酮治疗降低了 Mc4r 的表达。此外,Sim1 神经元中的 Mc4r 是利培酮引起的暴食症和体重增加所必需的。此外,我们发现相同的途径是另一种常用的抗精神病药物奥氮平的致胖作用的基础。值得注意的是,全细胞膜片钳记录表明,利培酮通过打开突触后钾传导急剧抑制下丘脑 Mc4r 神经元的活动。最后,我们表明,使用 MC4R 特异性激动剂 setmelanotide 治疗可减轻利培酮和奥氮平喂养小鼠的暴食症和肥胖症。
摘要 目的。检测神经信号的方法涉及侵入性、时空分辨率和记录的神经元或脑区数量之间的折衷。基于电极的探针提供了出色的响应,但通常需要经颅布线并捕获有限神经元群的活动。脑电图和脑磁图等非侵入性方法分别提供场电位或生物磁信号的快速读数,但具有空间限制,禁止从单个神经元进行记录。增强神经源性磁场的细胞大小的装置可用作基于磁的模式的原位传感器,并提高检测跨多个脑区不同信号的能力。方法。我们设计并建模了一种能够与单个神经元形成紧密电磁连接的装置,从而通过驱动电流通过纳米制造的电感元件将细胞电位的变化转化为磁场扰动。主要结果。我们使用从体外膜片钳神经元获取的信号和几何形状进行真实的有限元模拟,对设备性能进行了详细的量化,并展示了该设备产生可通过现有模式读取的磁信号的能力。我们将设备的磁输出与内在神经元磁场 (NMF) 进行了比较,并表明单个神经元的传导磁场强度在峰值时高出三倍多(1.62 nT vs 0.51 nT)。重要的是,我们报告了典型体素 (40 × 40 × 10 µ m) 内传导磁场输出的空间增强,比内在 NMF 强度高出 250 倍以上(0.64 nT vs 2.5 pT)。我们使用此框架根据纳米制造约束和材料选择对设备性能进行优化。意义。我们的量化为合成和应用用于检测大脑活动的电磁传感器奠定了基础,可以作为在单细胞水平上量化记录设备的通用方法。
药物发现研究服务 英国剑桥,2025 年 1 月 20 日:Metrion Biosciences(“Metrion”),一家专业的临床前合同研究组织 (CRO) 和离子通道筛选领域的领导者,今天宣布它已被列入《星期日泰晤士报》100 Tech,英国增长最快的私营科技公司。首期专题于 1 月 19 日发布,重点介绍英国增长最快的私营公司,这些公司正在开发或销售独特的专有技术,并得到 Singer Capital Markets、汇丰创新银行和 BDO 的支持。Metrion 为包括欧洲、美国和亚洲在内的全球主要市场中不断增长的大型制药公司和小型药物发现企业网络提供临床前药物发现服务。该公司的服务利用十多年的专业离子通道研究,这些研究建立在开发和使用自动膜片钳技术进行药物发现的开创性工作之上。其先进的专有检测和细胞系套件可通过标准或定制研究项目提供给客户,为一系列应用提供高质量数据,包括体外心脏安全性、高通量离子通道筛选、表型测定和使用脑切片组织和一系列原代神经元的神经科学研究。公司对实验结果进行仔细解读,提供战略建议以支持决策,从而为筛选策略提供最佳信息。在 2023 年 12 月公司完成 370 万英镑的股权融资后,Metrion 在 2024 年投入巨资扩大运营规模,以满足全球对其专业离子通道、心脏安全性和神经科学药物发现服务日益增长的需求。作为其中的一部分,公司进行了一系列战略任命以推动商业扩张,Lee Patterson 于 2024 年 12 月加入公司担任首席执行官 1,Chris Mathes 博士于 2024 年 7 月担任首席商务官 2,Clare Rutty 于 2023 年 12 月晋升为首席财务官 3。 “Metrion 很荣幸今年庆祝成立 10 周年,在此期间,公司已成为临床前药物发现领域值得信赖的全球合作伙伴。入选 100 Tech 榜单彰显了我们的成功,因为我们将继续拓展业务并满足日益增长的服务需求,”Metrion Biosciences 首席执行官 Lee Patterson 评论道:“我要感谢《星期日泰晤士报》对我的认可,还要感谢我们的投资者、合作伙伴,最重要的是,感谢我们辛勤工作、敬业的团队对我们转变合作伙伴研发计划、为促进人类健康做出有意义贡献的使命的坚定支持。”