囊性纤维化(CF)患者面临双刃剑:肝脏损伤是常见的并发症,而CF跨膜电导调节剂(CFTR)调节剂治疗剂提供希望,他们也会损害肝脏病例。研究中的X comple x isu e i s os t tradya l trandiva l s ry y o y o y o n ivasiv e活检。为了解决这个问题,我们将使用一种称为诱导多能干细胞(IPSC)的新技术,该技术从患者自己的血液中产生。这些IPSC可以转变为特定于患者的“迷你肝脏”,称为类器官,并保留个人的独特生物学。我们将比较健康的人,CF患者以及患有CF-REATED肝脏DA Mag e的器官。通过对这些mo del s进行分析,我们将通过其治疗影响肝脏来介绍MECHA NIS MS。这种方法不仅有望开发更安全,更有效的cf tre atme nts b ut,还可以使非i vasive me the the the the the disease the disease,最终终于可以改善患者的结果。6
囊性纤维化(CF)患者面临双刃剑:肝脏损伤是常见的并发症,而CF跨膜电导调节剂(CFTR)调节剂治疗剂提供希望,他们也会损害肝脏病例。研究中的X comple x isu e i s os t tradya l trandiva l s ry y o y o y o n ivasiv e活检。为了解决这个问题,我们将使用一种称为诱导多能干细胞(IPSC)的新技术,该技术从患者自己的血液中产生。这些IPSC可以转变为特定于患者的“迷你肝脏”,称为类器官,并保留个人的独特生物学。我们将比较健康的人,CF患者以及患有CF-REATED肝脏DA Mag e的器官。通过对这些mo del s进行分析,我们将通过其治疗影响肝脏来介绍MECHA NIS MS。这种方法不仅有望开发更安全,更有效的cf tre atme nts b ut,还可以使非i vasive me the the the the the disease the disease,最终终于可以改善患者的结果。8
神经元和电路的数据驱动模型对于理解膜电导、突触、树突和神经元之间的解剖连接的特性如何产生健康和疾病状态下的脑回路的复杂动态行为非常重要。然而,这些生物过程固有的复杂性使得构建和重复使用生物学详细模型具有挑战性。已经开发了各种各样的工具来帮助构建和模拟它们,但设计和内部表示的差异对那些希望在研究工作流程中使用数据驱动模型的人来说是技术障碍。NeuroML 是一种用于计算神经科学的模型描述语言,它的开发就是为了解决建模工具中的这种碎片化问题。自成立以来,NeuroML 已经发展成为一个成熟的社区标准,涵盖了计算神经科学中的各种模型类型和方法。它促成了一个大型生态系统的开发,该生态系统由可互操作的开源软件工具组成,用于创建、可视化、验证和模拟数据驱动模型。在这里,我们描述了如何将 NeuroML 生态系统纳入研究工作流程,以简化神经系统标准化模型的构建、测试和分析,并支持 FAIR(可查找性、可访问性、互操作性和可重用性)数据原则,从而促进开放、透明和可重复的科学。
尽管有针对CF跨膜电导调节剂(CFTR)功能的靶向疗法最近进展,但囊性纤维化患者(CF)的预后却有所不同。尽管是多器官疾病,但广泛的肺组织破坏仍然是发病率和死亡率的主要原因。朝着一种治疗治疗策略的进展,该治疗策略在患者的肺部实现CFTR基因添加技术的进展缓慢,尚未在临床试验之外发展。需要改进的递送向量来克服人体的防御系统,并在基因治疗适合临床护理之前确保有效且一致的临床反应。基于细胞的治疗(基于细胞的治疗)依赖于在移植到患者之前的同种异体或自体细胞的功能修饰 - 现在是各种疾病的治疗现实。对于CF,开创性的研究证明了将培养的人类气道干细胞同种异体移植到小鼠气道中的原则证明。但是,将基于细胞的疗法应用于人类气道有不同的挑战。我们使用病毒和非病毒输送策略回顾了CF基因疗法,并讨论了基于自体细胞疗法的当前进展。讨论了合适的再生细胞的识别,校正和扩展的进展,并讨论了预先细胞移植肺部调理方案的修复。
神经元和电路的抽象数据驱动模型对于理解膜电导,突触,树突和神经元之间的解剖连通性如何产生健康和疾病中脑电路的复杂动力学行为。然而,这些生物过程的固有复杂性使生物学上详细的模型的构建和重复使用具有挑战性。已经开发了广泛的工具来帮助他们的构建和模拟,但是设计和内部代表的差异是希望在其研究工作流程中使用数据驱动模型的人的技术障碍。Neuroml是一种模型描述计算神经科学的语言,是为了解决建模工具中的这种分裂而开发的。自成立以来,Neuroml已演变为一个成熟的社区标准,该标准涵盖了计算神经科学中广泛的模型类型和方法。它已启用了可互操作的开源软件工具的大型生态系统,用于创建,可视化,验证和模拟模型。在这里,我们描述了如何将神经生态系统纳入研究工作流程中,以简化神经系统的标准化模型的构建,测试和分析,并支持公平的(可发现性,可访问性,互操作性和可重复性)原理,从而促进开放,透明,透明,透明,透明和可重复的科学。
文章类型:原始文章目标:囊性纤维化(CF)是一种遗传常染色体隐性疾病,是由囊性纤维化跨膜电导调节剂(CFTR)基因突变引起的。本研究旨在研究外周血单核细胞(PBMC)中CRISPR使用CRISPR对CFTR基因进行CF的遗传修饰。材料和方法:设计了两个单个引导RNA,以靶向CFTR基因中的序列。通过使用荧光显微镜评估绿色荧光蛋白(GFP)表达,检查了PBMC细胞的转染效率。此外,测试了SGRNA-CAS9质粒以靶向CFTR基因。通过PCR和Sanger测序方法评估并确认ΔF508基因修饰。结果:我们的结果表明使用CRISPR/CAS9系统靶向位点特异性基因的可行性。在突变基因座中使用CRISPR校正了33%的样品,并通过NCBI数据库的序列BLAST和手臂基因座外的底漆确认。crispr/cas9方法代表了修复PBMC细胞中CFTR基因突变的有效工具。结论:因此,CRISPR系统可以高效且具有特定的特异性,并为细胞和模型动物的基因工程提供了强大的方法。通常,提出的方法对人类疾病的治疗开辟了新的见解。
摘要 已修改空间钳制鱿鱼轴突 (18'C) 的 Hodgkin-Huxley 方程,以近似来自重复发射甲壳类动物步行腿轴突的电压钳数据,并计算了响应恒定电流刺激的活动。钠电导系统的 ino 和 h. 参数沿电压轴向相反方向移动,因此它们的相对重叠增加约 7 mV。时间常数 Tm 和 Th 以类似的方式移动。延迟钾电导的电压依赖性参数 n、O 和 T 向正方向移动 4.3 mV,Tr 均匀增加 2 倍。漏电电导和电容保持不变。该修改后的电路的重复活动在质量上与标准模型的重复活动相似。电路中添加了第五个分支,代表重复步行腿轴突和其他重复神经元中存在的瞬时钾电导系统。该模型具有各种参数选择,重复发射频率低至约 2 个脉冲/秒,高至 350 个/秒。频率与刺激电流图可以通过低频范围的十倍直线很好地拟合,并且脉冲序列的总体外观与其他重复神经元的相似。刺激强度与在标准 Hodgkin-Huxley 轴突中产生重复活动的刺激强度相同。研究发现,重复放电率和第一个脉冲延迟时间(利用时间)受瞬时钾电导(TB)失活时间常数、延迟钾电导(Tn)和漏电电导(ga)值的影响最大。该模型提出了一种通过毫秒级膜电导变化产生稳定低频放电的机制。
抽象进行性阻塞性肺部疾病继发于慢性气道感染,再加上宿主免疫,是囊性纤维化发病率和死亡率的主要原因(CF)。在患有CF(PWCF)的人的气道中发现的经典病原体包括铜绿假单胞菌,金黄色葡萄球菌,伯克霍尔德cepacia complect,Achromobacter物种和嗜血杆菌的富集。虽然传统的呼吸培养培养物集中在这种有限的病原体上,但使用综合文化和与文化无关的分子方法的使用表现出了复杂的高度个性化的微生物群落。流失细菌群落多样性和丰富性,与传统的CF病原体(如Burkholderia或pseudomonas)相对增加的分类单元相对增加,长期以来一直被认为是疾病进展的标志。这些经典病原体的获取被视为晚期疾病的预兆,并假定是由经常发生的急性肺部恶化驱动的反复和频繁的抗生素暴露驱动的。最近,CF跨膜电导调节剂(CFTR)调节仪,旨在增强或恢复蛋白质水平/功能降低的小分子,已成功开发并具有深远的影响疾病。尽管有多种临床益处,但在PWCF中持续存在结构性肺损伤和结构性慢性气道感染。在本文中,我们回顾了普华永道的微生物流行病学,重点是我们对调节剂时代中对这些感染的不断发展的理解,并确定感染监视和临床管理中未来的挑战。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
在过去的5年中,一些研究调查了脂质组成和质膜动力学在囊性纤维化贩运中的作用(CF)跨膜电导调节剂(CFTR),阴离子在CF中有缺陷。已经报道了胆固醇和神经酰胺,包括短链的胆固醇和神经酰胺,在质膜中形成CFTR簇中的作用(2),以及由磷脂酰丝氨酸触发的CFTR的稳定性(3)。对细胞膜上CFTR稳定的重要贡献也来自Flippase(4)的作用,该酶是已知的酶调节磷脂在细胞膜上的运动。最近,Bear及其同事证明膜胆固醇在CFTR活性中起着重要作用(5)。尽管这项工作清楚地表明了脂质组成在CFTR运输和活动中的关键作用,但据我们所知,尚未有针对整个脂质体和尚未选择脂质物种的CF相关细胞模型的未靶向脂质分析。高分辨率液相色谱 - 质谱法(LC-MS)代表了非靶向脂质组学的关键资源,因为它允许在生物维泳,细胞和组织中识别和量化数百种单个脂质物种的可能性(6)。脂质组学已应用于许多不同的人体组织,例如大脑(7、8),肝(9),肾脏(10)和肺(11)。令人惊讶的是,与其他“ Ome”相比(12,13),人支气管上皮的脂质组的研究较少。相反,负面很少有论文描述了针对支气管上皮的脂质组学的分析工作(14),而与CF研究相关的大多数脂肪组学工作都是在血浆中(15、16)和BAL液体(17、18)中进行分析和生物标志物发现的。在细胞水平上,除了促进更好的CFTR折叠和贩运外,成功的CFTR救援动作可能与细胞膜的整体脂质组成的重大变化有关,这可能有利于或对比营救本身。几项研究部分解决了这一点:在S1P信号通路(19,20)的最新作品中,提出了鞘脂脂质对CF病理学的消息传递作用的积极影响。