可以执行 3D WMT 分析。要将 3D WMT 应用于数据集,用户必须提供一些参考点。在选定的 A 平面(通常是心尖四腔视图)中,用户必须为 WMT 固定三个参考点,两个位于二尖瓣水平的 LV 底部,一个位于心尖。B 平面使用相同的三个点,B 平面是与心尖四腔视图成 90° 正交的平面。通过这六个参考点,系统将自动检测心内膜边界。心外膜边界可以手动输入,也可以通过设置心肌的默认“厚度”来输入。在舒张末期参考框架处检测到心肌边界后,如果需要,用户可以在起始图像处校正 LV 参考的形状。当用户接受了舒张末期 LV 的形状时,可以开始 3D 壁运动跟踪过程。 20 秒内即可获得 3D WMT 的结果,并提供许多参数来解释心肌功能。
胸外按压是心肺复苏 (CPR) 期间促进全身循环的主要手段。最佳胸外按压可使心脏骤停患者获得良好的复苏效果。尽管最近的 CPR 指南建议使用实时反馈设备来在复苏期间维持高质量的 CPR,但它很少与良好的复苏效果相关[1-3]。原因之一可能是未监测胸外按压的位置。先前基于胸部计算机断层扫描的研究还发现,目前建议的胸外按压位置太高,无法有效压迫左心室 (LV) [4,5]。经食道超声心动图 (TEE) 被认为是一种很好的方法,可用于识别心脏骤停的可纠正原因以及监测 CPR 质量和位置[6-8]。它还可以在复苏期间不中断胸外按压的情况下识别受外胸按压的心脏结构[9]。因此,我们可以从心脏骤停患者 TEE 图像中评估胸外按压的准确位置和外部胸外按压产生的收缩功能。这可能验证 CPR 期间促进左心室收缩功能的最佳胸外按压方法[10-12]。分割左心室对于确定胸外按压的位置和获得心脏功能定量评估指标(如舒张末期容积、收缩末期容积、面积和射血分数)是必不可少的。人们进行了许多尝试来分割左心室。Noble 等[13]基于轮廓跟踪方法,采用了基于卡尔曼滤波器的心外膜和心内膜边界跟踪系统。Bosch 等[14]将边界检测的主动外观模型改进为主动外观运动模型,可实现全自动、强大且连续的左心室检测。大多数心脏图像,如超声波图像和核磁共振成像(MRI),都有模糊的边界和严重的噪声;因此,分析这些图像需要时间,而且结果可能因人而异。人工神经网络已被提出,因为它们提供了很高的分析精度,并使医学图像的泛化成为可能[15,16]。Smistad 等人[17]建议使用 U-Net [18] 的深度卷积神经网络进行 LV 分割模型,它由一个编码器-解码器组成,在生物医学图像中显示出鲁棒的分割模型。然而,U-Net 并没有考虑所有语义特征在解码过程中的贡献。因此,Moradi 等人[19]开发了一种改进的 U-Net,称为多特征金字塔 U-Net,其中通过在 U-Net 解码器路径的所有级别上链接特征图来补充特征。然而,现有的方法有一个局限性,即它们无法识别阴影和 LV 之间的模糊边界。此外,由于胸外按压,CPR 期间获取的 TEE 图像比正常超声心动图噪声更大。我们通过应用残差特征聚合方法和各种注意技术开发了基于 U-Net 的网络。我们的模型不仅展示了使用挤压和激励块以及残差块的强大特征提取技术,而且还关注更重要的特征。工作流程如图 1 所示。下一节描述了数据组织、深度学习的数据增强技术以及我们模型的结构。