抽象的迷幻药物是有意识状态的有效调节剂,因此是研究其神经生物学的强大工具。n,n,二甲基丁胺(DMT)可以迅速诱导以生动且精致的视觉图像为特征的极端身临其境的意识状态。在这里,我们研究了DMT诱导的改变状态的电生理相关性,这些参与者接受了DMT和(分别)安慰剂(盐水),同时指示闭上眼睛。与我们的假设一致,结果表明,皮质激活的时空模式(即行进波)类似于视觉刺激引起的。此外,闭合眼静止的典型自上而下的α波段节奏显着下降,而底部向前波则显着增加。这些结果支持最近的模型,该模型建议迷幻药减少“先验的精确加权”,从而改变自上而下的信息与自下而上信息的平衡。这些发现的强大假设征服性质意味着发现了一个重要的机械原理,基于迷幻诱导的改变状态的基础。
Safer from Wildfires 是一种自上而下的野火恢复方法,具有三层保护——针对建筑物、周围环境和社区。遵循这些可行的步骤可以帮助您节省保险费用。Safer from Wildfires 是由保险专员 Ricardo Lara 与州长 Gavin Newsom 政府的应急响应和准备机构之间的跨机构合作创建的。
英国的预测警务必须采用以社区为中心的设计方法,以确保运营有效性和与道德和法律标准保持一致。在预测性警务的每个阶段 - 从设计/开发到部署和评估,本地社区与警务机构之间的真正参与和合作的论文提倡,而不是自上而下的,以技术为导向的实施。
1。创建一个新的部分文档和二-D素描图2。在设计意图之后,在对象上应用和编辑维度3。描述挤出基本特征和草图的特征4。演示标准组件的自下而上技术5。证明对自上而下的组装设计方法6。创建所需的图形视图以记录设计过程7。在计算机模型上进行分析并根据需要完善设计
培养肉,也称为人工培育肉或实验室生长肉,旨在通过体外细胞培养而非传统的牲畜屠宰来生产肉类[1,2]。作为一种新兴的细胞农业技术,生产培养肉的本质是基于动物组织再生机制构建肌肉组织。因此,各种组织工程技术已应用于培养肉[3−5]。尽管有许多发展,但不难发现它们可以分为两类,这也是培养肉的两个典型难点。一类侧重于促进肌肉细胞分化,这可以通过纹理/图案化的表面或空间限制来帮助实现。另一种致力于通过自上而下或自下而上的方法构建三维(3D)组织结构。与直接制造3D结构的自上而下方法不同,自下而上的策略是首先生成构建块,然后将其组装起来以实现大规模构建。基于这些理解,我们将从纹理支架、3D 生物打印、成型、图案化和细胞片工程等分类概述培养肉的前沿组织工程策略。在讨论工程方法时,还将介绍应用材料。最后,我们将讨论该领域的未来前景和挑战。
摘要 视觉系统使用对物体的选择性瞥见序列来支持行为目标,但这种注意力控制是如何学习的呢?在这里,我们提出了一个编码器-解码器模型,该模型的灵感来自大脑中构成识别-注意系统的自下而上和自上而下的视觉通路。在每次迭代中,都会从图像中获取一个新的瞥见,并通过“什么”编码器(前馈、循环和胶囊层的层次结构)进行处理,以获得以对象为中心(对象文件)的表示。该表示被馈送到“哪里”解码器,其中不断发展的循环表示提供自上而下的注意力调节以规划后续的瞥见并影响编码器中的路由。我们展示了注意力机制如何显著提高对高度重叠数字进行分类的准确性。在需要比较两个对象的视觉推理任务中,我们的模型实现了近乎完美的准确性,并且在推广到看不见的刺激方面明显优于更大的模型。我们的工作证明了基于对象的注意力机制对对象进行连续观察的好处。
具有良好潜在应用前景的纳米结构无机材料引起了基础和实际方面的广泛研究关注。SiO 2 (二氧化硅) 是最广泛使用的无机材料之一,在微电子 1、2 、微机电系统 3、4 和微光子学 5、6 等领域需要具有纳米级分辨率的制造方法。为了制造具有所需纳米结构的二氧化硅,通常需要复杂的自上而下的图案化工艺,包括热氧化 7 和化学气相沉积 8,然后进行干 9、10 或湿 11、12 蚀刻步骤。虽然已经开发出具有高产量的成熟加工技术,但这些技术涉及使用危险化学品(例如抗蚀剂、显影剂和蚀刻剂)并且需要复杂的制造设备。此外,使用自上而下的制造方法实现纳米分辨率的复杂和/或不对称的三维 (3D) 结构非常具有挑战性。因此,对能够生产具有复杂几何形状和化学变化的 3D 二氧化硅结构的直接纳米制造技术的需求很大。新兴的增材制造 (AM) 技术或使用数字设计的 3D 打印可以通过逐层沉积 13-16 创建精细结构,以生成复杂的结构并简化制造过程。更重要的是,作为一种已得到充分证明的自下而上的技术,据报道 3D 打印可以构造曲线基底 17、非平面表面 18 和曲折的 3D 图案 19,这些超出了传统自上而下的图案化方法的能力。熔融石英玻璃的 AM 是通过对无定形富含二氧化硅的浆料 20 进行立体光刻实现的,分辨率为几十微米。尽管已经制造出具有出色光学和机械性能的明确结构,但商用 3D 打印技术提供的空间分辨率相对较低,限制了它们在微电子、微机电系统和微光子学中的应用。新兴的微数字光处理技术 2