并在对照组中产生了较高的ACC幅度与免疫后疗法和唤醒事件相关。在免疫疗法前后,患者的滋补和质量EDA升高,在治疗后平均和中位EDA活性下降,与缘缘激活相关。在HR和BVP中没有观察到显着变化。重大意义:发现使用可穿戴设备对FBD及其相关事件进行准确和自动检测的潜力,提供了一种非侵入性方法来量化征用负担和治疗功效。这种方法可以最大程度地减少院内监测的后勤挑战,并提供连续的,分散的手段,从而改善患者护理和临床决策。future研究应着重于将方法扩展到白天监控,并将其有效性与院内视频EEG和EMG聚书进行比较。
摘要 - 脑肿瘤需要评估以确保及时诊断和有效的患者治疗。形态学因素,例如大小,位置,纹理和可变外观 - 肿瘤检查。医学成像提出了挑战,包括噪声和不完整的图像。本研究文章介绍了一种处理磁共振成像(MRI)数据的方法,包括用于图像分类和DeNoing的技术。有效使用MRI图像使医疗专业人员可以检测包括肿瘤在内的脑部疾病。这项研究旨在通过分析提供的MRI数据来对健康的脑组织和脑肿瘤进行分类。与诸如计算机断层扫描(CT)之类的替代方法不同,MRI技术提供了内部解剖组件的更详细表示,是研究与脑肿瘤相关的数据的合适选择。MRI图片首先使用各向异性扩散滤波器进行脱氧技术。用于模型创建的数据集是公共访问且经过验证的脑肿瘤分类(MRI)数据库,其中包括3,264次大脑MRI扫描。SMOTE用于数据增强和数据集平衡。卷积神经网络(CNN),例如RESNET152V2,VGG,VIT和EFIDENTEN,用于分类程序。有效网络的精度为98%,是记录最高的。索引术语 - MRI,EfficityNet,脑肿瘤,Smote,CNN
‡皇家比利时自然科学研究所(RBINS),运营局自然环境(OD自然),水上和地层生态学(ATECO),海洋生态与管理(Mareco),Rue Vautier 29,1000,1000,Brussels,Brussels,Bilgium§§tethys Research Institute,Tethys Research Institute,Viale G. B. B. B. B. B. B. B. Gadio 2,20122年2月2日,2012年2月2日| Greenov Ites,10 Docteur Joseph Audic,56000,法国Vannes。 13009 Marine,70 Rue Jean Doucet,16470,法国圣米歇尔»Interniversity Microectronics Center(IMEC),75 Kapeldref,3001,比利时Sirehna,5 Rue de l'albrane,44340,Buguena,Buguenais,france,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯92 Group,5 Rue de l'Halbrane,44340,法国Bouguenais
大多数颅内动脉瘤(ICA)出现在脑血管树的特定部分上,名为Willis圈(Cow)。尤其是,它们主要出现在构成这种圆形结构的主要动脉分叉上的十个。因此,对于有效而及时的诊断,开发一些能够准确识别每个感兴趣分叉(BOI)的方法至关重要。的确,自动提取出现ICA风险较高的分叉将使神经放射学家快速浏览最令人震惊的地区。由于最近在人工智能上的效果,深度学习是许多模式识别任务的最佳性能技术。此外,各种方法是专门为医学图像分析目的而设计的。这项研究旨在帮助神经放射科医生迅速找到任何出现ICA发生风险的分叉。它可以看作是一种计算机辅助诊断方案,在该方案中,人工智能有助于访问MRI内感兴趣的区域。在这项工作中,我们提出了一种完全自动检测和识别构成威利斯圈子的分叉的方法。已经测试了几个神经网络架构,我们彻底评估了分叉识别率。
指数多项式在细分中对于重建特定曲线和曲面系列(例如圆锥曲线和二次曲面)至关重要。众所周知,如果线性细分方案能够重现某个指数多项式空间,那么它一定是级别相关的,其规则取决于定义所考虑空间的频率(以及最终的多重性)。本文讨论了一种通用策略,该策略利用湮灭算子直接从给定数据中局部检测这些频率,从而选择要应用的正确细分规则。这是构建自适应细分方案的第一步,该方案能够局部重现属于不同空间的指数多项式。本文在一个涉及经典蝴蝶插值方案的例子中明确展示了所提策略的应用。这个特定的例子是对 Donat 和 L´opez-Ure˜na (2019) 中针对单变量情况所做工作的概括,这启发了这项研究。
临床数据仓库 (CDW) 包含数百万患者的医疗数据,为开发计算工具提供了绝佳的机会。磁共振图像 (MRI) 对图像采集过程中的患者运动特别敏感,这将导致重建图像中出现伪影(模糊、重影和振铃)。因此,CDW 中的大量 MRI 被这些伪影破坏,可能无法使用。由于扫描次数太多,无法手动检测它们,因此有必要开发工具来自动排除(或至少识别)带有运动的图像,以充分利用 CDW。在本文中,我们提出了一种从研究到临床数据的新型迁移学习方法,用于自动检测 3D T1 加权脑 MRI 中的运动。该方法包括两个步骤:使用合成运动对研究数据进行预训练,然后进行微调步骤,以将我们的预训练模型推广到临床数据,这依赖于 4045 张图像的标记。目标是 (1) 能够排除具有剧烈运动的图像,(2) 检测轻微的运动伪影。我们的方法在第一个目标上实现了出色的准确率,平衡准确率几乎与注释者的准确率相似(平衡准确率 > 80 %)。然而,对于第二个目标,其表现较弱,远低于人类评分者。总体而言,我们的框架将有助于在医学成像中利用 CDW,并强调对基于研究数据训练的模型进行临床验证的重要性。
太平洋中的深海纹状会具有强大的商业,文化和娱乐价值,尤其是鲷鱼(Lutjanidae),这些价值(Lutjanidae)构成了大部分捕捞量。然而,由于数据的稀缺,管理这些遗迹是具有挑战性的。立体声诱饵的远程水下视频站(BRUV)可以提供有关鱼类股票的有价值的定量信息,但是手动处理大量视频是耗时的,有时甚至是不现实的。为了解决这个问题,我们使用了基于区域的卷积神经网络(更快的R-CNN),这是一种深度学习体系结构来自动检测,识别和计算BRUV中的深水鲷鱼。视频是在新喀里多尼亚(南皮林)收集的,深度为47至552 m。使用在6,364张图像中观察到的11个深水鲷鱼物种中的12,100个注释的数据集,我们为具有舒适注释的6种物种获得了良好的模型性能(F-Measures> 0.7,最高0.87)。视频中最大丰度的自动和手动估计之间的相关性很高(0.72 - 0.9),但较快的R-CNN显示出低估的偏见。一种半自动协议,我们的模型在处理BRUV镜头时支持手动观察者,改善了性能,与手动计数的相关性为0.96,对于某些关键物种,则具有0.96的相关性和完美的匹配(r = 1)。此模型已经可以帮助手动观察者半自动地处理BRUVS录像,并且当更多培训数据可用以降低假否定率时,肯定会改善。这项研究进一步表明,在海洋科学中使用人工智能是进步的,但对未来有必要。
摘要 — 自动眼动追踪对于与患有肌萎缩侧索硬化症的人互动、用眼睛控制电脑鼠标以及对葡萄膜黑色素瘤进行控制性放射治疗都具有重要意义。据推测,凝视估计的准确性可能通过使用前庭眼动反射来提高。这种不自主的反射会导致缓慢的补偿性眼动,与头部运动的方向相反。因此,我们假设在眼动追踪过程中让头部自由移动一定比保持头部固定、只让眼睛移动产生更准确的结果。本研究的目的是创建一个低成本的眼动追踪系统,通过保持头部自由移动,将前庭眼动反射纳入凝视估计中。所用的仪器包括一个低成本的头戴式网络摄像头,可记录一只眼睛。尽管用于记录的网络摄像头是低端的,并且没有直接照明,但瞳孔检测是完全自动和实时的,采用了简单的基于颜色和基于模型的混合算法。本研究测试了基于模型的算法和基于插值的算法。根据凝视估计结果中的平均绝对角度差,我们得出结论,基于模型的算法在头部不动时表现更好,而在头部移动时同样表现良好。当头部自由移动时,使用任一算法,凝视点与目标点的大多数偏差小于 1 ◦,可以得出结论,我们的设置完全符合文献中的 2 ◦ 基准,而头部不动时的偏差超过 2 ◦。所使用的算法之前未在被动照明下进行测试。这是首次研究考虑到前庭眼反射的低成本眼动追踪装置。
糖尿病周围神经病(DPN)的早期检测和管理对于降低相关的发病率和死亡率至关重要。角膜共聚焦显微镜(CCM)促进了角膜神经的成像,以检测DPN的早期和进行性神经损伤。然而,它的更广泛的采用受到手动神经量化的主观性和时间密集型性质的限制。这项研究研究了CCM图像的二元分类,以区分健康对照和DPN个体的二元分类,研究了最先进的视觉变压器(VIT)模型的诊断实用性。还将VIT模型的性能与先前使用CCM图像用于DPN检测的卷积神经网络(CNN)进行了比较。使用大约700 ccm图像的数据集,VIT模型达到了0.99的AUC,灵敏度为98%,特定的92%,而F1得分为95%,超过了先前报道的方法。这些发现突出了VIT模型作为基于CCM的DPN诊断的可靠工具的潜力,从而消除了对耗时的手动图像分割的需求。此外,结果增强了CCM作为检测神经损伤的非侵入性和精确成像方式的价值,尤其是在神经病相关的疾病(例如DPN)中。
本文介绍了微带宽带微波放大器设计和分析所涉及的程序。用于系统设计,仿真,优化和分析,采用了计算机辅助设计(CAD)工具,即Angilent Advance Design System(ADS)。对放大器设备-FLC317MG-4 FET进行了测试,以稳定性测试,并观察到在2至6 GHz频带之间无条件稳定。研究了两个可能的理想匹配电路,以确定具有最大传感器功率增益的最佳匹配电路。观察到,具有平行开路存根的四分之一波变压器比其他匹配电路在频率范围更大(带宽/宽带更大的频率(带宽/宽带)的范围更高。因此,它是使用微丝线进行宽带放大器设计的,并以3.5至4.5 GHz的带宽实现了约9.8 dB至10.118 dB的最大扁平增益。