简介:Samuel Carter 博士是物理科学实验室 (LPS) 的研究员主管,从事固态自旋系统的量子传感和量子计算实验研究。他是固态量子比特量子光学、自旋相干控制和固体缺陷自旋量子传感方面的专家。2004 年,他在加州大学圣巴巴拉分校获得物理学博士学位,与 Mark Sherwin 教授合作研究太赫兹驱动量子阱,并在 NIST 和科罗拉多大学博尔德分校与 Steve Cundiff 教授一起从事半导体超快光谱博士后研究。在美国海军研究实验室从事固态量子信息科学工作 15 年后,Carter 博士加入 LPS,从事半导体自旋系统的量子传感和量子计算研究。
Tristan 是一位国际知名的实验物理学家,因其在量子点阵列中相干传输和自旋操控方面的开创性研究而闻名。他在巴黎高等师范学院 (ENS) 的卡斯特勒布罗塞尔实验室 (LKB) 获得博士学位,师从诺贝尔奖获得者 Serge Haroche,随后在代尔夫特理工大学获得博士后奖学金,该大学是自旋量子比特实验研究的先驱中心。在加入 Quobly 担任全职 CTO 之前,Tristan 还曾领导法国国家科学研究中心 (CNRS) 格勒诺布尔的量子自旋量子比特社区。
磁化动力学的轨道分量(例如由铁磁共振 (FMR) 激发的轨道分量)可能在纳米磁性器件中产生“轨道电子”效应。然而,区分轨道动力学和自旋动力学仍然是一个挑战。在这里,我们采用 X 射线磁圆二色性 (XMCD) 来量化 Ni 80 Fe 20 薄膜中 FMR 诱导动力学的轨道分量和自旋分量之间的比率。通过在 Ni L 3 ; 2 边缘应用 XMCD 求和规则,我们获得动态磁化的轨道自旋比为 0.108 6 0.005。该值与静态磁化的 0.102 6 0.008 一致,使用与动态 XMCD 实验相同的 X 射线束配置进行探测。所展示的方法提出了一种可能的途径,可以将轨道电子效应与磁性介质中的自旋电子对应物区分开来。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的恢复与破缺完美地体现在共振参数和密度分布随势深的演变中:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
相干量子现象的开发代表着计量学领域的一个新领域,该研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁 [1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
视频:磁性是巨大的基本和技术重要性领域。在原子水平上,磁性起源于电子“自旋”。纳米融合(或基于纳米级的自旋电子学)的领域旨在控制纳米级系统中的旋转,这在过去几十年中导致了数据存储和磁场传感技术的天文学改善,并获得了2007年诺贝尔物理学奖的认可。纳米级固态器件中的旋转也可以充当新兴量子技术的量子位或量子位,例如量子计算和量子传感。由于磁性与旋转之间的基本联系,铁磁体在许多固态自旋装置中起着关键作用。这是因为在费米水平上,状态的电子密度是自旋偏振的,这允许铁磁体充当自旋的电气喷射器和检测器。铁磁体在费米水平的低自旋极化,流浪磁场,串扰和纳米级的热不稳定性方面存在局限性。因此,需要新的物理学和新材料,以将自旋和量子设备技术推向真正的原子极限。出现的新现象,例如手性诱导的自旋选择性或CISS,其中观察到载体自旋与中性的有趣相关性,因此可以在纳米杂交中发挥作用。这种效果可以允许分子尺度,手性控制自旋注射和检测,而无需任何铁磁铁,从而为装置旋转的基本方向打开了一个新的方向。■密钥参考CISS在此重点的账户中发现了在手性分离,识别,检测和不对称催化等不同领域的无数应用,但由于其对未来旋转基因技术的巨大潜力,我们专门回顾了这种影响的旋转器械结果。第一代基于CISS的自旋装置主要使用手性生物有机分子。但是,也已经确定了这些材料的许多实际局限性。因此,我们的讨论围绕着手性复合材料的家族,由于它们能够在单个平台上吸收各种理想的材料特性,因此可以成为CISS的理想平台。在过去的几十年中,有机化学界对这类材料进行了广泛的研究,我们讨论了已确定的各种手性转移机制,这些机制在CISS中起着核心作用。接下来,我们将讨论对其中一些手性复合材料进行的CISS设备研究。重点是给手性有机碳同素同素复合材料的家族,在过去的几年中,该帐户的作者对此进行了广泛的研究。有趣的是,由于存在多种材料,杂交手性系统的CISS信号有时与纯手性系统中观察到的信号不同。鉴于手性复合材料的巨大多样性,到目前为止,CISS设备研究仅限于几种品种,预计该帐户将增加对手性复合材料家族的关注,并激励对其CISS应用的进一步研究。
c⃝Springer-verlag Berlin Heidelberg 2010,这项工作将获得版权。所有权利都是保留的,无论材料的全部或部分都是有关材料的全部权利,特别是翻译,重印,重新使用,插图,朗诵,广播,对微型薄膜或任何其他方式的复制以及在数据库中存储的权利。仅根据1965年9月9日的德国版权法,在当前版本中允许此出版物或其部分的重复,并且必须始终从Springer获得使用的许可。根据德国版权法,违规行为有责任起诉。使用一般描述性名称,注册名称,商标等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。
摘要:用于癌症疗法的大量新兴抗体 - 药物结合物(ADC)导致了一个显着的市场“繁荣”,引起了全球关注。尽管ADC对研究人员提出了巨大挑战,特别是关于鉴定合适的抗体,接头和有效载荷组合的挑战,但截至2021年9月,已经获得了11个ADC的批准,自2017年以来,其中8个就获得了八项批准。对这种治疗方法的乐观态度是明显的,尽管2020年共同的1920年大流行是ADC竞技场交易和合作伙伴关系的里程碑,这表明大型制药公司仍然有很大的兴趣。在此,我们通过关注FDA批准的人的特征来回顾ADC的热情,并就领域的前进方向提出一些想法。
我们从理论和实验上研究了由具有 Dzyaloshinskii-Moriya 相互作用的倾斜反铁磁体共振引起的自旋泵浦信号,并证明它们可以产生易于观察的逆自旋霍尔电压。使用双层赤铁矿/重金属作为模型系统,我们在室温下测量反铁磁共振和相关的逆自旋霍尔电压,其值与共线反铁磁体一样大。正如对相干自旋泵浦的预期,我们观察到逆自旋霍尔电压的符号提供了有关模式手性的直接信息,这是通过比较赤铁矿、氧化铬和亚铁磁体钇铁石榴石推断出来的。我们的研究结果通过对具有低阻尼和倾斜矩的反铁磁体进行功能化,开辟了产生和检测太赫兹频率自旋电流的新方法。当代自旋电子学利用电子自旋进行信息处理和微电子学,主要基于铁磁器件架构。从提高数据处理速度和缩小片上信息处理规模的长远发展来看 [1],反铁磁体自旋电子学是一个很有前途的途径 [2]。与铁磁体相比,反铁磁体的关键优势在于它们的共振频率通过子晶格的交换耦合得到增强,因此通常在太赫兹范围内 [2,3]。然而,在补偿反铁磁体中,净矩的缺失严重阻碍了对其超快动力学的简单获取,尤其是在薄膜中,以及基于超快反铁磁体的器件的开发 [4,5]。因此,界面自旋输运现象可以为反铁磁体中的自旋弛豫过程和自旋动力学提供新的见解 [5–8]。
在目前的长距离通信中,大量粒子携带的经典信息本质上对某些传输损耗具有鲁棒性,但因此可能会被窃听而不被察觉。另一方面,量子通信可以提供可证明的隐私,并可以利用量子中继器进行纠缠交换来减轻传输损耗。为此,过去几十年来,人们付出了相当大的努力来开发量子中继器,将长寿命量子存储器与不可区分的单光子源结合起来。已经开发了多种固态光学自旋量子比特候选物,包括量子点、稀土离子以及金刚石和碳化硅 (SiC) 中的色心。从这个角度来看,我们简要概述了在 SiC 中开发光学活性自旋量子比特的最新进展,并讨论了量子中继器在应用中的挑战和可能的解决方案。鉴于不同材料平台的发展,讨论了 SiC 自旋量子比特在可扩展量子网络中的前景。