摘要:我们报道了通过近距离氮空位 (NV) 单自旋传感器对磁性绝缘体 Y 3 Fe 5 O 12 薄膜中具有宽波矢范围的磁振子进行光学检测。通过多磁振子散射过程,激发的磁振子在 NV 电子自旋共振频率下产生波动磁场,从而加速 NV 自旋的弛豫。通过测量 NV 中心发射的自旋相关光致发光的变化,可以光学访问波矢可变至 ∼ 5 × 10 7 m − 1 的磁振子,从而为揭示磁系统中潜在的自旋行为提供了另一种视角。我们的结果凸显了 NV 单自旋量子传感器在探索新兴自旋电子材料的纳米级自旋动力学方面提供的重大机遇。关键词:量子传感、氮空位磁力仪、自旋波、磁绝缘体
二维(2D)电子系统中的表面等离子体引起了人们对其有希望的轻质应用的极大关注。然而,由于难以在正常的2D材料中同时节省能量和动量,因此表面等离子体的激发,尤其是横向电(TE)表面等离子体。在这里我们表明,从Gigahertz到Terahertz机制的TE表面等离子体可以在混合介电,2D材料和磁体结构中有效地激发和操纵。必需物理学是表面自旋波补充了表面等离子体激发的额外自由度,因此大大增强了2D培养基中的电场。基于广泛使用的磁性材料,例如Yttrium Iron Garnet和Difuluoride,我们进一步表明,等离子体激发在混合系统的反射光谱中表现为可测量的浸入,而浸入位置和浸入深度可以通过在2D层和外部磁性磁场上的电气控制很好地控制。我们的发现应弥合低维物理学,等离子间和旋转的领域,并为整合等离子和旋转器设备的新颖途径打开新的途径。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
集体自旋波激发,镁元素是下一代Spintronics设备的有前途的准颗粒,包括用于信息传输的平台。在量子大厅铁磁体中,检测这些电荷 - 中性激发依赖于以多余的电子和孔的形式转化为电信号,但是如果多余的电气和孔相等,则检测到电信号是挑战性的。在这项工作中,我们通过测量镁产生的电噪声来克服这一缺点。我们使用石墨烯的Zeroth Landau级别的对称性破裂的量子厅Ferromagnet来启动镁质。这些镁的吸收在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。 此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。 我们的模型还允许我们查明设备中弹道木棒运输的状态。在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。我们的模型还允许我们查明设备中弹道木棒运输的状态。
为了理解自旋流的基本限制并优化自旋注入过程,了解飞秒自旋注入的效率及其背后的微观机制是必不可少的。通过光诱导自旋流来操控磁化已经被证实,即超快退磁[3,6,7,9]以及小角度进动的激发,即GHz和THz自旋波。[12–14]尤其是,通过亚皮秒激光驱动的自旋流可以诱导自旋转移矩(STT),[14]而在重金属-铁磁体界面已经证明了通过圆偏振泵浦脉冲产生的光学自旋矩。[15,16]我们旨在通过结合时间分辨实验和从头算理论来产生微观见解,从而展示确定和提高自旋注入效率的方法,使未来的超快自旋电子学应用成为可能。至关重要的是,非平衡自旋注入集中在低于 100 fs 的脉冲中,从而产生具有高峰值强度的瞬态自旋电流。由于非平衡自旋注入是由光激发引起的,并且由自旋相关的电荷电流组成,因此不仅涉及费米能级附近的状态,还涉及其周围几个 eV 宽的能量区域中的状态,这些能量区域由泵浦激光脉冲的光子能量给出。这将非平衡自旋注入与在平衡条件下电驱动的磁振子自旋电流区分开来。[17–19]
电气工程系 (www.iitk.ac.in/ee/) 提供几乎所有电气工程子学科的硕士、硕士 (R) 和博士课程。领域包括:信息和编码理论;通信、电信和无线网络;点对点网络;数字交换系统;航空电子和导航系统、5G/6G 无线技术;量子计算和通信、分子通信;人工智能和机器学习、数字信号和图像处理;计算机视觉;逆问题和断层扫描;信号与系统理论;控制系统和机器人;网络控制和电动汽车控制;电子和虚拟仪器;模糊逻辑;神经网络及其应用;电力系统经济学;优化;电力市场;电力系统保护;高压电介质和绝缘;高压直流输电和 FACTS、电能质量;智能电网和同步相量;电力电子;电力驱动微电网;微电子学;VLSI 系统设计;模拟和数字电路设计;半导体器件建模与仿真;固态器件;纳米电子学和纳米级器件;有机电子学;柔性电子学;光伏技术;电磁学;射频工程和微波;天线,超材料;MMIC;射频和微波传感器;RFID;微波和毫米波成像;射频能量收集、电磁和断层成像;太赫兹成像和测试;纳米光子学、等离子体学、基于量子点的器件;光电子学;光纤信号处理;非线性光纤;光纤传感器;量子密码学和量子光学;自旋波;光子网络和系统。
主题代码:PH-xxx 课程名称:自旋电子技术简介 LTP:3-0-0 学分:3 主题领域:OEC 大纲:磁学基础知识:磁学类型、自旋轨道相互作用、偶极相互作用、交换相互作用、磁各向异性 自旋相关传输:异常霍尔效应、各向异性磁阻 (AMR)、巨磁阻 (GMR)、隧道磁阻 (TMR)、自旋阀 (SV)、磁隧道结 (MTJ)、磁场传感器(硬盘读取头、生物传感器) 磁化动力学:自旋转移扭矩 (STT)、自旋霍尔效应 (SHE)、自旋轨道扭矩 (SOT)、轨道霍尔效应 (OHE)、磁化切换、磁性 skyrmions 自旋电子器件:磁阻随机存取存储器 (MRAM) 技术 - STT-MRAM、SOT-MRAM、自旋扭矩和自旋霍尔纳米振荡器(STNO 和 SHNO)、自旋量热器、赛道存储器基于自旋的计算:纳米磁逻辑、自旋逻辑、基于振荡器的神经形态计算、自旋波计算。科目代码:PH-xxx 课程名称:太空探索 LTP:3-0-0 学分:3 学科领域:OEC 大纲:不同国家太空探索的历史、对太空技术的需求、对空间科学知识的需求、近地空间的等离子体、大气中的波、其他行星的大气/电离层、空间测量:主动和被动遥感和现场测量、轨道:开普勒行星运动定律、轨道类型、霍曼转移轨道、卫星通信和导航、空间技术的应用。
量子计算是利用量子叠加、量子纠缠等资源对信息进行编码和处理,在一些重大科学与工程问题上被证明比经典计算具有显著优势,其潜在应用将对未来信息技术及其他相关领域产生深远而重大的影响。本文简要回顾了量子计算的发展历史,包括其基本思想和概念的产生、重要理论和算法的发展,讨论了该领域几条具有代表性的技术路线的现状与发展前景,包括超导量子计算、分布式超导量子计算、光子量子计算、离子阱量子计算、硅基量子计算等系统。通过分析各路线面临的一些共同问题,对我国未来量子计算的发展提出了一些思考与建议,特别强调加强国家层面的战略规划,建立高水平的研究团队,加强相关基础研究、核心技术与关键仪器的开发。 关键词:量子计算;量子算法;量子计算控制系统;量子软件;超导量子计算;分布式量子计算;离子阱量子计算; 硅基量子计算; 光子量子计算; 中性原子量子计算; 金刚石氮空位色心; 核磁共振量子计算; 自旋波量子计算; 拓扑量子计算
摘要:颤抖的运动现象,德语中被称为Zitterbewegung(ZBW),一直吸引了科学家多年。本研究报告使用长波模型对扶手椅型石墨烯条的这种情况进行了理论分析,根据海森伯格表示,确定了࢞ෝ和࢟ෝ方向的位置操作员。高斯分布函数用作伪自旋波函数的表示。检查了石墨烯纳米乙烯的宽度和波矢量KX对该现象的振荡值的影响以及多种石墨烯层。选择了这种特定的石墨烯纳米替比,因为它的边缘效应最小,使其可以充当具有可控能隙的半导体材料。因此,可以通过传导和价能带之间的干扰来实现这种现象。进行了一系列的分析和数学数学计算,从而导致以下发现:这种现象首先是在这种石墨烯纳米纤维中出现的,在大约30个方向上出现在大约30个方向上,以实现和不同的值。六边形石墨烯格子有可能藏有电子的可能性。其次,发现表明电子波包的振荡是暂时的和双向的,在所有层中均表现出半规则周期性的宽度====的宽度周期性。振荡值随波数据包的宽度而上升。在这里很明显跳跃能量参数的影响。第三,当石墨烯层的数量上升时,由于层之间的电子传输而出现了称为Altrach区域的区域。这项研究工作提供了对石墨烯条中Zitterbewegung现象的理论见解,代表了该领域的适度补充。关键字:石墨烯;扶手椅石墨烯纳米甲(Agnrs);颤抖的运动;电子的波数据包; ZBW。
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。