专有信息未经泰雷兹阿莱尼亚航天公司事先书面许可,不得以任何形式复制、修改、改编、出版、翻译本文件的全部或部分,也不得向任何第三方披露。© 2022 泰雷兹阿莱尼亚航天公司保留所有权利
摘要——本文对自由空间光通信系统进行了全面分析。自由空间光通信系统是一种现代化技术,其中表面环境充当发射器和接收器之间的传输介质,为了成功传输光信号,源和目的地都应该在 LOS 中。作为通道的外部环境可以是任何外层空间,可以是真空或适度的空气。FSO 系统通过未授权频段光通信频谱提供有吸引力的带宽增强。FSO 系统中的传输和接收主要依赖于外部通道,即外部环境,因为存在雨(小雨、中雨、大雨)、雾、雪等外部因素。FSO 链路的可靠性在很大程度上取决于外部或表面天气条件,这些条件会衰减在自由空间中传播的光信号强度。随着恶劣天气条件的加剧或加剧,光信号的强度会减弱。对于众多源,可以使用波长多路复用器将各种波长的光信号组合成单个源,同样,在目的地,可以使用波长解复用器分离组合波长的光信号。影响传输系统的其他方面可能包括特定波长或特定波段的光源类型、调制格式、要发送的数据量、使用的光电探测器类型等。特定波长上要传输的数据量以 Mbps 或 Gbps 为单位。这项研究主要侧重于各种天气条件,这些条件在 FSO 系统中起到了障碍作用。天气条件和数据量相结合是决定光信号从发射器到接收器的传输距离的主要考虑因素。通过优化 FSO 系统,它通过降低输出信号中的误码率 (BER) 来最大化源和目的地之间的距离。FSO 系统的最终结论可以通过 Q 因子(即信号质量)和使用眼图分析仪分析眼图来检查。
为了最大限度地减少大范围无线光通信 (WOC) 应用中的发散并扩大潜在的链路范围,可以使用位于传输光纤端点焦距处的适当准直透镜对光束进行准直,以减少光束扩散的影响。使用靠近接收光纤端点的类似透镜将光束重新聚焦回光纤中。本报告深入探讨了与研究类似自由空间光通信系统相关的概念,并从理论上优化接收光束点尺寸以确保接收数据信号的最大效率。在研究真实系统时,考虑大气条件至关重要,因为它们具有重大影响。此外,本文还回顾并讨论了最近的进展和发展。
项目委员会:Abhijit Biswas,喷气推进实验室。(美国);Don M. Boroson,麻省理工学院林肯实验室。(美国);Kerri L. Cahoy,麻省理工学院(美国);Donald M. Cornwell Jr.,亚马逊公司(美国);Baris I. Erkmen,Hedron(美国);Harald Hauschildt,欧洲空间研究与技术中心。(荷兰);Frank F. Heine,Tesat-Spacecom GmbH & Co. KG(德国);William S. Rabinovich,美国。海军研究实验室。(美国);Todd S. Rose,航空航天公司(美国);Julie Smith,空军研究实验室。(美国); Sarah A. Tedder,NASA 格伦研究中心。(美国);Linda M. Thomas,美国海军研究实验室。(美国);Morio Toyoshima,国家信息和通信技术研究所(日本)
-Kuljer(1)Joseph Montri(2),Philippe Perrault。 AnaëlleMaho(4),西蒙·莱夫(Simon Leveque)(4)