利用雄性不育性进行 F 1 杂交的新育种方法将为自花授粉作物莴苣育种开辟一个令人兴奋的新领域。雄性不育性是 F 1 杂交育种的一个关键性状。绘制利用雄性不育性的致病基因图谱至关重要。“CGN17397”的 ms-S 雄性不育 (MS) 基因通过 ddRAD-seq 定位到连锁群 (LG) 8,并使用两个 F 2 群体将其缩小到两个标记之间。该区域跨越约 10.16 Mb,其中根据莴苣参考基因组序列(版本 8 来自“Salinas”)注释了 94 个基因。 MS 系“CGN17397-MS”和雄性不育 (MF) 系“CGN17397-MF”的全基因组测序表明,只有一个基因在 Lsat_1_v5_gn_8_148221.1 区域有所不同,该基因是酰基辅酶 A 合成酶 5 (ACOS5) 的同源物,并且在 MS 系中被删除。据报道,ACOS5 是花粉壁形成所必需的,并且 ACOS5 的无效突变体在某些植物中完全是雄性不育的。因此,我得出结论,指定为 LsACOS5 的 Lsat_1_ v5_gn_8_148221.1 是 ms-S 基因座的生物学上合理的候选基因。利用 LsACOS5 的结构多态性,开发了 InDel 标记来选择 MS 性状。这里获得的结果为生菜的基因雄性不育提供了有价值的信息。
植物育种技术涵盖了旨在改善作物遗传特征的所有过程。它有助于实现理想的特征,例如对疾病和害虫的抵抗力,对环境压力的耐受性,更高的产量和提高作物的质量。本评论文章旨在描述和评估当前的植物育种技术和新方法。该定性评论采用了一种比较方法来探索不同的植物育种技术。将常规的植物育种技术与现代植物育种技术进行了比较,以了解植物生物技术的进步。在常规植物育种中讨论了反交叉育种,质量选择和纯线选择,用于自花授粉,反复选择和杂交用于交叉授粉的作物。现代技术包括CRISPR CAS-9,高通量表型,标记辅助选择和基因组选择。此外,对新型技术进行了审查,以获得更多的见解。对常规和现代植物育种的深入分析有助于了解两者的优势和缺点。现代繁殖技术具有更大的优势,因为它们更可靠且耗时。它也更准确,因为它是一种基于基因型的方法。但是,常规育种技术具有成本效益,需要更少的专业知识。现代植物育种使用基因组学技术,具有上风。与常规方法不同,现代方法能够通过使用不同的标记来选择隐性等位基因。诸如QTL映射,标记辅助繁殖辅助的技术在幼苗阶段选择上级植物,这是传统繁殖的不可能的。现代植物育种是一门科学,因此更可靠和准确。
全基因组关联研究 (GWAS) 可以识别与性状相关的基因座,但识别致病基因可能是一个瓶颈,部分原因是连锁不平衡 (LD) 衰减缓慢。全转录组关联研究 (TWAS) 通过识别基因表达-表型关联或将基因表达数量性状基因座与 GWAS 结果整合来解决这一问题。在这里,我们使用自花授粉大豆 (Glycine max [L.] Merr.) 作为模型来评估 TWAS 在 LD 衰减缓慢的植物物种性状遗传解析中的应用。我们为大豆多样性面板生成了 RNA 测序数据,并识别了 29 286 个大豆基因的遗传表达调控。不同的 TWAS 解决方案受 LD 的影响较小,并且对表达源具有稳健性,可以识别与来自不同组织和发育阶段的性状相关的已知基因。通过 TWAS 鉴定出新的豆荚颜色基因 L2,并通过基因组编辑对其进行了功能验证。通过引入新的外显子比例特征,我们显著提高了由结构变异和可变剪接导致的表达变异的检测。因此,通过我们的 TWAS 方法鉴定出的基因表现出多种多样的因果变异,包括 SNP、插入或缺失、基因融合、拷贝数变异和可变剪接。使用这种方法,我们鉴定出与开花时间相关的基因,包括以前已知的基因和以前未与此特性关联的新基因,从而为 GWAS 的见解提供了补充。总之,这项研究支持将 TWAS 应用于 LD 衰减率较低的物种的候选基因鉴定。
摘要 番茄是世界上第一种被食用的蔬菜。它生长在非常不同的条件和地区,主要用于加工番茄的田间,而新鲜市场番茄通常在温室中生产。番茄面临着许多环境压力,包括生物压力和非生物压力。如今,许多新的基因组资源可用,从而加速了遗传进程。在本章中,我们将首先介绍培育气候智能型番茄的主要挑战。我们将介绍与生产力、果实质量和对环境压力的适应有关的育种目标,特别关注气候变化如何影响这些目标。在第二部分中,将介绍可用的遗传和基因组资源。然后将讨论传统和分子标记育种技术。然后将特别关注生态生理建模,这可能构成定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何使用它们来培育气候智能型番茄。 关键词:番茄,育种,生产力,生物胁迫,非生物胁迫,理想型,建模 1 简介 番茄是继马铃薯之后世界上第一种被食用的蔬菜。它已成为许多国家的重要食品。番茄主要有两种品种:用于加工业的有限生长番茄,仅在露地生产;用于新鲜市场的无限生长品种,可在从露地到受控条件的温室等各种条件下种植。番茄,Solanum lycopersicum L.,与马铃薯、茄子和辣椒同属茄科。它是一种自花授粉作物,具有中等大小(950 Mb)的二倍体(2n=2x=24)基因组。2012 年发表了一个高质量的参考基因组序列(番茄基因组联盟,2012 年)。番茄原产于南美洲,还有 12 种野生近缘种,可与栽培番茄品种杂交。存在几个大型遗传资源集合,这些基因库中保存了 70,000 多个品种。这些集合还包括科学资源,例如突变体集合或分离种群。长期以来,番茄也是遗传分析的典型物种。许多诱导重要表型变异的突变被发现并被克隆,许多抗病基因的功能也得到了表征。番茄也是果实发育和生理学的典型物种。它易于转化,是第一种生产和销售的转基因食品(Kramer 和 Redenbaugh,1994 年)。在本章中,我们将首先介绍培育气候智能番茄的主要挑战。与生产力相关的育种目标,我们将介绍水果品质和对环境压力的适应性,特别关注气候变化如何影响这些目标。第二部分将介绍可用的遗传和基因组资源。然后讨论传统和分子标记育种技术。然后,我们将特别关注生态生理建模,这可能是定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何将其用于培育气候智能型番茄。