Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等) 2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等 2016)。 在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等)2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等2016)。在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。2018),并且与黄铜质作物和自然区域有关(Alaniz等人2021)。智利中的当前控制措施由常规杀虫剂的重复应用组成,这些杀虫剂似乎无效(SAG 2017a,b)。当前,在城市或郊区环境中或自然栖息地中没有可行的选择可以控制人口。目前,智利瓦尔帕莱索的一家研究所Centro Ceres正在通过多样化的农业生态系统的营养成分来调查这种害虫的替代解决方案。通过增加功能性生物多样性和采用推拉策略,目的是降低Hilaris的密度和对农作物的损害,并有利于自然敌人的存在。然而,关于一般来说,针对臭虫的土著罐头剂的知识,尤其是Hilaris的知识在智利方面很差。由于需要饲养设施和共同限制,因此,Hilaris的前哨卵的暴露仅是机会性的,但是我们研究B. Hilaris的努力偶然地提供了我们在这里提出的实质性结果。
摘要:传统的害虫管理策略,例如不加区分的农药使用,具有不利的环境和人类健康影响。作为可持续的替代方案,这项研究重点是使用纳米传感器检测stink Bugs发布的半化学物质,包括信息素和防御性化合物。这些纳米传感器具有聚苯胺和银(Pani.ag)的纳米杂化层以及聚苯胺和氧化石墨烯(PANI/GO)的纳米复合材料。The study explores the detection of synthetic semiochemicals, including cis and trans bisabolene epoxides, ( E )-2-hexanal, ( E )-2-decenal, ( E )-2-octenyl acetate, and ( E )-2-octenal semiochemicals emitted by Nezara viridula (Southern green stink bug) in the real environment.感应层的表征显示出pani.ag和pani/go层之间的亲水性和表面粗糙度差异。当暴露于顺式和反式双氧化物氧化物,(E)-2-己酸和(E)-2-二烯类等合成化合物时,纳米传感器显示出明显的响应,而PANI/GO表现出较高的敏感性。谐振频率移动与化合物的浓度相关,强调了这些传感器在检测低浓度的情况下的潜力,分别低于0.44和1.15 ng/ml。对大豆植物进行的真实环境测试表明,纳米传感器有效检测到了病毒乳杆菌成年人发出的半化学物质,尤其是在男性 - 雌性夫妇的情况下,强调了其对农业害虫监测的潜力。这些发现支持使用这些纳米传感器来早期检测有害生物活动,从而为综合害虫管理提供了积极的方法。关键字:纳米传感器,害虫管理,臭虫,半化学■简介
虱子,臭虫,tick虫,水ches和其他微小的吸血的爬行生物被视为讨厌的吸血鬼,引起瘙痒,引起令人恶心的感觉,使人类和动物疾病探向人类和动物疾病,从而带来了有关人类社会的医疗,健康,健康,卫生和精神问题(Lehane Socieities(Lehane)(Lehane),Lehane,2005年)。除了它们携带和传播的微生物病原体外,独特的微生物与它们相关,并以多种方式影响其生理,生态学和其他生物学方面(Rio等,2016; Husnik,2018)。例如,他们的食物,脊椎动物的血液肯定是营养丰富的,但没有一些重要的营养素,例如B族维生素。因此,许多流血器具有称为细菌的专业器官,用于托管维生素养育共生体(Buchner,1965年),这使它们只能在血液粉上壮成长(Duron和Gottlieb,2020年)。完全充血的血液喂食器表现出充满挑战的肠道环境,具有大量的蛋白质,铁,血红素和抗微生物成分,例如抗体和补充,这可能会促进独特的肠道微生物组(Sterkel等,2017)。由于高通量DNA测序技术的最新发展,我们对与这些吸血无脊椎动物相关的微生物组的了解,必须与它们独特的喂养习惯和生理学有关,这已经迅速增长。因此,这个研究主题是“吸血节肢动物和其他动物的微生物伴侣:与其生理,生态和进化的相关性”旨在为这项研究网络中出现的新发现提供一个论坛。In total, nine articles and two reviews are compiled, which showcase the microbial associates of a diverse array of blood-feeding invertebrates including lice (Insecta: Psocodea), tsetse flies (Insecta: Diptera), fleas (Insecta: Siphonaptera), ticks (Arachnida: Ixodida) and mites (Arachnida: Mesostigmata)来自
抗菌抗性是一种全球性的威胁。已经建立了管理运动,并实施了政策,以保护在人类,动物和植物中适当使用抗臭虫。对动物生产中使用抗菌剂的限制在全球议程上。生产商正在投资措施,涉及生物安全,遗传学,医疗保健,农场管理,动物福利和营养,以防止疾病并最大程度地减少抗菌药物的使用。幼小的动物(小猪,肉鸡和小牛)特别容易受到疾病和疾病的影响,因此,在这些动物上使用抗菌素的使用相对较高。促进动物健康的功能营养是减少动物生产中抗菌素需求的可用工具之一。营养会影响宿主防御和抗病性所需的关键功能。动物营养策略应旨在支持这些宿主防御系统,并降低潜在有害亚情况的饲料和水中存在的风险,例如霉菌毒素,抗营养因素以及致病细菌和其他微生物。促进胃肠道健康(GIT)健康的一般饮食措施包括,例如,饮食纤维的功能用途来刺激胃肠道分泌和运动性,降低蛋白质含量,以避免在后肠里发酵过多的蛋白质,并选择性地使用饲料添加剂和饲料成分的稳定性和饲料量的稳定性。此外,有机酸的使用可能有助于饲料和水安全。这种知识用于建立动物营养中的最佳实践,可以采用策略来减少对抗菌剂的需求并含有抗菌素耐药性。关键词:抗菌素耐药性,抗菌使用,抗菌剂,抗生素,肠道健康,动物生产,动物健康,饲料,饲料,饲料添加剂,动物营养
- 细胞生物学技术(动态质量重新分布,Flex Station II,BRET钙动员测定法)。- DSRNA的合成用于RNA干扰和基因静音 - 质粒载体的构造,克隆过程以及在细菌和细胞系中重新组合的蛋白质的表达。•生物分子和细胞科学硕士学位(LM6)Ferrara大学,于2014年7月16日获得。参加国会和研讨会•2018年(7月)欧洲昆虫学大会(ECE 2018) - 那不勒斯(意大利)。贡献了三张海报:“斑点果蝇(果蝇果蝇)的章鱼胺/泰兰受体受体的克隆,分子表征和组织表达。” “开采基因在lobesia botrana(Denis和Schiffermüller)的脱氧基因抗性中的挖掘基因通过从头转录组组装和差异表达分析进行的。” “梨psylla cacopsylla pyri的垫子行为和双模式通信。” •2019年(7月)国际分子昆虫科学专题讨论会 - 西班牙(西班牙)。用两张海报做出的贡献:“山地植物可以调节苏木果果蝇(DSTAR1)中的1型酪氨酸受体:新型生物农药的分子和药理方面。” “来自棕色的臭臭虫Halyomorfha Halys的1型酪氨酸受体(TAR1):表征生物农药的新靶标。” •2019年(12月)欧洲博士网络“昆虫科学”,X年度会议 - 热那亚(意大利)。贡献“登革热载体中的章鱼和泰氨带受体,埃及埃及”的贡献。 •2022年(11月)美国昆虫学学会 - 温哥华(加拿大)。prothuto con una thra raale orale:“植物性昆虫卤素形halys的1型酪胺受体(TAR1)的分子表征和药理特征。” •2022(6月)昆虫生物技术会议 - 加拿大湖上的尼亚加拉。contruto con una restrazione orale:“泰拉米蛋白能信号通路参与调节chagas疾病矢量rohodnius prolixus中的卵产量”,监督di Studenti di Studenti di 8 tesi da corlelatore:
各种生物,包括细菌,生物,真菌,植物和动物,分泌蛋白质和肽,它们自组成为有序的淀粉样蛋白纤维,从而执行不同的生理功能。在有关微生物功能性淀粉样蛋白的本期特刊中,Balistreri等。对已知功能性淀粉样蛋白及其广泛的功能进行了全面的综述,这可能仅代表对蛋白质的实际数量和活性的预测,这些蛋白质和活性在生活的所有王国中自组装成淀粉样蛋白[1]。作者全面地描述了通过高度精心策划的组件参与有毒活性的微生物淀粉样蛋白,重点是大肠杆菌和铜绿假单胞菌铜绿和酵母prions。ÁLVAREZ-MENA等。使我们更深入地了解革兰氏阳性细菌分泌的淀粉样蛋白的多功能性,包括链霉菌,葡萄球菌,葡萄球菌,链球菌突变,spp。[2]。淀粉样蛋白作为微生物中的关键毒力因子的功能使它们成为旨在发现新型抗臭虫疗法的结构表征的有吸引力的候选者。与涉及神经退行性和全身性疾病的真核淀粉样蛋白的广泛信息相反,机械,功能和高分辨率结构信息有关微生物淀粉样蛋白的结构信息仅适用于非常特殊的系统。[4]。这两项研究都集中在非常不同的淀粉样蛋白系统上,独立观察到响应环境变化的纯净的调节。[2])。本期特刊中的研究论文揭示了来自金黄色葡萄球菌(Zaman和Andreasen)[3]的毒性淀粉样蛋白肽的新特性以及枯草芽孢杆菌中主要的蛋白质纤维生物纤维成分(Ghrayeb等人)Zaman和An-dreasen发现了金黄色葡萄球菌可溶蛋白(PSMS)的聚集动力学和纤维形态的显着pH依赖性。这种条件特定的行为可以调节并在不同的角色之间进行调整并切换,包括细胞毒素,抗菌剂和生物膜结构。Ghrayeb等。表明,在中性或酸性pHs生长时,天然枯草芽孢杆菌TASA形成非常不同的超分子形态,这也取决于蛋白质和盐的浓度的变化[4]。不同的纤维形态可能会在生物膜中编码不同的功能作用。pH变化也可以用于在有毒淀粉样蛋白的储存和活性之间切换,如单核细胞增生李斯特氏菌(ÁLVAREZ-MENA等人。最近使用低温电子显微镜(Cryo-EM)确定了TASA纤维的高分辨率结构,揭示了与典型淀粉样蛋白不同但具有β-片含量丰富的拟张形态的纤维。人类淀粉样蛋白通常由垂直于纤维轴堆叠的分子形成,以形成跨β纤维中的成对β-片。相比之下,tasa纤维由由供体 - 斯特兰德交换组装的折叠单体组成,每个亚基捐赠了β-链条以完成下一个亚基的折叠沿纤维[5]。
2024年10月14日荣誉黛比·斯塔诺(Debbie Stabenow参议院农业委员会,美国众议院农业营养委员会和林业委员会1010 Longworth House Office大楼328-一家罗素参议院办公室大楼华盛顿特区20515华盛顿特区20510 DC 20510亲爱的主席Stabenow,董事长汤普森(Thompson)主席汤普森(Thompson)董事长汤普森(Thompson),在最近几周中,我们在卫生工具中排名大量的工具,曾经误以为是居住的工具。经理和其他人需要生产我们国家的食品,燃料和纤维用品;维持公共卫生计划;保护公共土地;并保留基础设施,以及其他用途。这些工具,包括农药和遗传创新,是安全,适当的监管,并且对于维持美国的竞争力和国家安全至关重要。我们强烈敦促国会和联邦监管机构拒绝为这些技术破坏现有风险和科学的监管框架的任何努力,这将使美国更依赖外国竞争对手对食品和农业产品。安全,负担得起且丰富的农产品供应对我国的福祉至关重要。数十年来,数百万的美国农民和牧场主已忠实地向美国消费者提供了这些商品。但是,如果不继续获得安全,适当监管的农业投入,则无法确保提供这些重要农业产品的能力。杂草,昆虫和真菌暴发会造成大量的作物产量损失。他们还可以侵扰放牧的土地,以至于它们无法使用牲畜并为野火燃料负荷做出贡献。如果不继续使用防止毁灭性害虫,美国农场和牧场业务所需的农药工具,将很快变得不可持续,这危害了我们为消费者提供负担得起的食品和其他农产品的能力。遗传改进技术对于持续的美国农业生产力,可持续性和竞争力至关重要。数十年来,这些工具已帮助美国农民提高了农作物的产量并预防害虫。这些工具的新颖应用可能有助于保护农作物免受干旱的影响,并提高其营养品质,以及其他改进。保留对这些技术的访问对于维持美国消费者的良好商品供应以及全球美国农业的竞争力至关重要。如上所述,不仅是我们国家的农业生产者受到对这些工具的潜在限制的影响。农药对于保护公共卫生和基础设施免受致命或破坏性的害虫(例如蚊子,白蚁,啮齿动物,臭虫等)至关重要。美国拥有基于风险和科学的法定当局,以支持这些重要工具的安全和正确使用。没有有意义的,继续使用这些工具,美国公众可能会因啮齿动物或昆虫传播疾病而受到数十亿美元的伤害,而公共和私人基础设施可能会因害虫损害而遭受巨大损失。例如,生物技术的产品受到USDA,FDA和EPA的彻底监管,以确保它们不会带来环境,食品或喂养安全风险。对于农药,EPA严格确保所有使用都不会对人类健康或环境构成不合理的风险。根据《食品质量保护法》(FQPA),国会为任何农药食品建立了默认的10倍安全系数