核电反应器可以在广泛的温度中提供工艺热量,从低温工艺热量的应用,例如区域供暖和脱盐等应用到氢生产和钢铁工业的高温热量。这些过程中的许多过程都是能源密集型的,并且依赖化石燃料。从化石燃料转换为此类过程的核能将减少碳排放,同时还为核电站运营商提供了额外的收入来源,从而增强了核电作为缓解气候变化的可行性,并有助于全球可持续性。核致密性可以为可持续发展目标(SDG)做出贡献,例如可持续发展目标6,确保所有人的水和卫生设施的可用性和可持续管理;可持续发展目标7,确保所有人都可以使用负担得起,可靠,可持续和现代能源;可持续发展目标9,建立弹性基础设施,促进包容性和可持续的工业化和促进创新;和可持续发展目标13,采取紧急行动来打击气候变化及其影响。其他可持续发展目标将间接实现。例如,SDG 8促进持续,包容和可持续的经济增长,全部和富有成效的就业和体面的工作,将由与新兴小型模块化反应堆技术及其非电信应用相关的新技术的开发和部署提供支持。
M. Salehi等。 “通过毛细管介导的无结合三维印刷的镁 - 锌 - 锌(ZK)合金的添加剂制造”,《材料与设计》,169(2019)。 M. Salehi等人,“通过纳米颗粒作为烧结剂作为烧结辅助工具的粘合喷气添加剂制造中的致密性”,《制造过程杂志》,99,(2023),M. Salehi等。“通过毛细管介导的无结合三维印刷的镁 - 锌 - 锌(ZK)合金的添加剂制造”,《材料与设计》,169(2019)。M. Salehi等人,“通过纳米颗粒作为烧结剂作为烧结辅助工具的粘合喷气添加剂制造中的致密性”,《制造过程杂志》,99,(2023),
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
由于学习高维概率致密性的困难,用于新物理过程异常检测的方法通常仅限于低维空间。尤其是在组成级别上,在流行密度估计方法中,很难纳入理想的特性,例如突变不变性和可变长度输入。在这项工作中,我们基于扩散模型引入了粒子物理数据的置换不变的密度估计值,该模型是专门设计用于处理可变长度输入的。我们通过利用学习的密度作为置换式异常检测评分来证明我们的方法论的功效,从而有效地识别了仅背景假设下的可能性很小的JET。为了验证我们的密度估计方法,我们研究了学习密度的比率,并与受监督分类算法获得的密度相比。
对陶瓷的添加剂制造的实施比其他材料类别更具挑战性,因为大多数塑形方法都需要聚合物粘合剂。激光添加剂制造(LAM)可以提供一条新的无粘合剂合并路线,因为它能够直接处理陶瓷而无需后处理。然而,陶瓷的激光加工,尤其是高性能氧化陶瓷,受到低热冲击性,弱致密性和低光吸收的限制;特别是在可见或近红外范围内。目前缺乏高性能氧化陶瓷的LAM(粉末床融合 - 激光束和定向能量沉积)的广泛审查。此最新的评论对氧化陶瓷领域的过程技术,部分属性,开放挑战和过程监测进行了详细的摘要和批判性分析。提高了准确性和机械强度的提高,可以将氧化陶瓷的含量开放到新领域。
胰管导管腺癌(PDAC)是一种恶性肿瘤,全球最糟糕的预后之一,总5年生存率仅为9%。尽管化学疗法是针对晚期PDAC患者的建议治疗,但其效率并不令人满意。PDAC的致密性不塑性基质是化学疗法药物递送的主要障碍,并且在PDAC的进展中起着重要作用。因此,靶向基质的疗法被认为是改善化学疗法和患者生存的效率的潜在治疗策略。虽然几项临床前研究表明结果令人鼓舞,但也已经揭示了PDAC基质的抗肿瘤潜力,并且极端耗竭可能促进肿瘤的进展并破坏患者的存活。因此,在基质丰度和耗尽之间达到平衡可能是靶向基质靶向疗法的进一步。本综述总结了PDAC中基质靶向疗法的当前进展,并讨论了其治疗作用的双层剑。
摘要:本研究研究了烧结温度对BA1-XSRXTIO3陶瓷机械性能的影响。BA1-XSRXTIO3(x = 0.2)陶瓷通过溶胶 - 凝胶合成,并在不同的温度下烧结。我们使用适当的测试方法来描述机械品质,例如硬度,断裂韧性和弹性模量。结果表明,当烧结温度变化时,机械行为发生了很大变化。这显示了可以在高级电子和结构材料中使用的BA1-XSRXTIO3陶瓷的机械性能的重要处理条件。XRD模式表现出四方相,并且晶体尺寸随烧结温度的升高而增加。BST样品的表面形态看起来均匀且均匀,温度中等。高烧结温度,并且随着材料实现更好的谷物生长和填料的较高密度,从而降低了孔隙度。高烧结温度会由于提高致密性和孔隙率降低而提高机械强度,由于密度增加,较大,形成良好的晶粒和改善的断裂韧性,随着材料变得更致密和晶粒边界的形成更好,增强了裂纹,从而产生了更高的硬度。也发现(C/A比)随着烧结温度的升高而降低。
摘要:基于Zn的金属的激光粉末床融合(LPBF)具有产生定制的可生物降解植入物的突出优势。然而,在Zn激光熔化期间发生了大规模蒸发,因此调节激光能量输入和气体屏蔽条件以消除LPBF过程中蒸发烟雾的负面影响成为一个关键问题。在这项研究中,建立了两个数值模型,以模拟扫描激光与Zn金属之间的相互作用以及屏蔽气流与蒸发烟雾之间的相互作用。第一个模型通过将蒸发对能量,动量和质量的保护作用进行影响,预测了不同激光输入的蒸发率。以蒸发速率作为输入,第二个模型通过采取气体循环系统的效果,包括几何设计和流量速率,预测了在屏蔽气流的不同条件下蒸发烟雾的消除效果。在涉及足够激光输入和优化的屏蔽气流的情况下,在LPBF过程中,蒸发烟雾有效地从加工室中删除。此外,通过比较纯锌和钛合金的LPBF来讨论表面质量致密性的影响。已建立的数值分析不仅有助于找到基于Zn的金属LPBF的足够激光输入和优化的屏蔽气流,而且还有益于理解LPBF工艺蒸发的影响。
摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能