在 1980 年以后制造的飞机中,所有电子飞行仪表系统 (EFIS) 都更为先进,取代了单独的 ADI 和 HSI。当今的飞机(2009 年)仅使用一台 AMLCD 彩色显示器,供飞行员和副驾驶员使用,位于他们正前方。第三个共享彩色显示器显示所有发动机指示器和机组警报系统 (EICAS)。这些显示器取代了大量的仪表组,这使得飞行员投入大量精力和眼球扫描来查看、理解、分析并采取相应步骤,以确保飞机安全飞行。所有计算机生成的刻度盘仪表都遵循“基本 T”配置。机载计算机根据飞行阶段自动决定和选择需要向飞行员展示哪些仪表,以“需要知道”为基础。飞行有各种明确定义的阶段,例如从出发点的地面滑行、起飞、爬升、巡航、下降和地面滑行到到达航站楼。
1-1 F-16A MLU 驾驶舱布局 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................................................................................................................................14 1-12 HUD 远程控制面板.....................................................................................................................................................................................................15 1-13 AOA 支架........................................................................................................................................................................................................................................15 1-13 AOA 支架........................................................................................................................................................................................................................................................15 1-13 AOA 支架........................................................................................................................................................................................................................................................................15 .16 1-14 CMFD 控制. . . . . . . . . . . . . . . . . . . . . . .
o服务舱布局和工作流程。o足够的照明以查看正在执行的工作。o访问限制和保护。o限制其他技术人员和个人的人流。o电动汽车供应设备(EVSE)和合适的电源。o设备和工作台,具有非导电表面。o橡胶垫和非导电区域。o高压组件的安全存储区,操作和/或损坏。o特殊设备和个人防护设备(PPE)的存储。o起重设备,用于移动高压电池和重件。o双柱升降机,适用于电池夹具插孔。•二级和第三级人的个人防护设备(PPE)。•电动推进车辆(XEV)服务安全套件:(请参阅:物理障碍,标牌和边界保护,以获取详细信息)
空客最新的宽体客机 A330neo 的开发充分利用了 A350 的技术。此外,在设计 A350 时,空客的目标之一是在原始 A330 的通用性和 A380 的创新性之间取得平衡。例如,A350 和 A380 采用了相同的侧杆和带包线保护的数字电传飞行控制理念 - 该理念首次应用于 A320 和 A330 客机,现在已成为空客产品系列的标准配置。空客的另一项标准功能是“暗驾驶舱”概念,即灯光仅在顶置系统管理面板上亮起,以指示需要采取行动的位置。总体而言,A330neo 和 A350 的驾驶舱布局相似。最明显的区别是 A350 拥有更大的屏幕和机载信息系统 (OIS) 显示屏。在 A330neo 上,大部分内容都可以在电子飞行包 (EFB) 笔记本电脑或平板电脑上使用。
图 1 显示了 EC135。该飞机实现了飞机结构和先进技术部件的最佳组合。其中最重要的项目是: 具有蛤壳门和单层地板的后装载能力 混合机身结构(复合材料、金属板) 具有长时间空运行能力的铝合金 MGB 被动隔振系统 [1] 自动控制的可变旋翼速度 [2] 具有数字电子发动机控制(FADEC)的双发动机配置 [3] 在 Turbomeca Arrius 2B(1)和 Pratt & Whitney PW 206 B 发动机之间进行选择 偏航 SAS(单缸)用于 VFR 操作,计划进行双/单飞行员 IFR 认证 [4] 具有高可见度的驾驶舱布局 现代 MMI 技术(Avionique Nouvelle) 无轴承主旋翼系统 具有抛物线叶尖和先进 DM-H3/H4 翼型的复合材料叶片 带不等距叶片的扇翼尾桨(Fenestron) [5]
航空航天 - 优化飞机结构,风洞测试,富裕的机械生物医学 - 人体工程学驾驶舱布局,开发用于健康民用的可穿戴传感器 - 机场基础设施设计,跑道建设,运输系统。工程师 - 开发航空电子系统,设计可靠的硬件comp。科学 - 自主性系统,网络安全,分析电气数据电气 - 电源分配,航空电子硬件,开发传感器系统环境 - 排放量控制,减排噪声解决方案,减少燃料工业 - 简化飞机生产,维护时间表,维护时间表,减少材料的耐用材料 - 机械材料测试机构,设置机械设备,设计机械设备,设法和设计机械设置,并进行机械设置,并进行机械设置,并进行机械设备,并进行机械设置,并进行机械设置,并进行机械设备,并进行机械设置,并进行机械设备,并将
缩写列表 AD 适航指令 AMOC:替代合规方式 ANAC 巴西国家民航局 APU:辅助动力装置 ARC:适航审查证书 AWO:全天候运行 CPDLC:管制员/飞行员数据链通信 CVR:驾驶舱语音记录器 C of A:适航证书 DTA:损伤容限分析 EFB:电子飞行包 ELT 紧急定位发射器 EVS:增强视景系统 FDR:飞行数据记录器 HUD:平视显示器 ELT 紧急定位发射器 LOPA:乘客舱布局 MEL:最低设备清单 MCM:维护控制手册 MMEL:主最低设备清单 MRI:维护要求项目(如 CMR、适航限制项目等) NAA:国家航空局 RPA 遥控驾驶飞机 RPAS 遥控驾驶飞机系统 RPS 遥控驾驶站 SB:服务通告 SRM:结构修理手册 STC:补充型号合格证 TCDS:型号合格证数据表
________________________________________________________ 飞行员是在航空界发挥着重要作用的人为因素。飞行员的工作负荷和疲劳程度较高,极大地影响飞行安全。提供舒适的工作条件是非常必要的。需要对飞机驾驶舱进行维修和开发,以获得适合飞行员的工作条件。本文旨在回顾驾驶舱人体工程学的研究成果,以改善飞行员的工作环境。该综述是通过在互联网上搜索研究文献来进行的。使用关键词人体工程学、驾驶舱、飞机和飞行员进行搜索,然后准备研究主题和研究结果的摘要。检索结果共获得9篇参考文献,按年份顺序排列,并以表格形式展示。对总结结果进行分析,以获得现有的研究进展和趋势。审查结果表明,飞机驾驶舱的大部分开发工作是在飞行员座位上进行的。该研究是在生物力学方面进行的,即身体对工作环境的反应。驾驶舱布局、控制系统和飞行员训练辅助设备也得到了改进。摘要 _________________________________________________________ 飞行员是在航空界发挥着重要作用的人为因素。飞行员的工作负荷和疲劳程度较高,极大地影响飞行安全。提供c的工作条件
摘要:随着科技的不断飞跃和创新的不断推进,民用飞机的系统日益精密复杂,座舱内飞行员需要处理的信息量也随之增加,认知负担也随之加重,对飞行安全构成极大威胁。为此,设计人员基于人机工程学,制定了重要性、使用频率、功能分组、操作顺序等座舱布局原则,可以有效减轻飞行员的认知负担。某机型座舱布局对四大设计原则的符合程度可以体现其人机工程学设计水平。本文依据上述四大座舱布局原则的概念,提出了座舱布局对四大设计原则符合性的评价方法。该方法以实际机型在正常飞行任务中使用的座舱系统控件操作顺序为评价数据源,采用加权累积法得到座舱布局总体评价结果。最后以A320系列和B737NG系列民航客机驾驶舱为例,阐述了民航客机驾驶舱布局的评估流程,并根据最终评估结果验证了所提评估方法的可行性和有效性。