引入与其他器官和组织相比,例如结肠,肺部和红骨髓,由于其细胞的有丝质状态,成年大脑被理解为最低的放射敏感组织之一。然而,许多最近的研究报道了医疗保健专业人员中脑肿瘤的发生,他们长期暴露于医疗X射线(介入心脏病学家和放射科医生)2,3,并表明与暴露对照4相比,脑癌死亡率的风险增加了两倍。介入心脏病学家被认为接受高职业剂量的散射X射线辐射5。此类报告引起了人们的关注,即可能存在长期暴露于散射X射线和大脑中副作用之间的联系,这表明比目前想象的要高的放射敏感性。关于报告病变的有趣事实与它们的横向性有关(在左或右半球发生)。Roguin等人3在介入心脏病学家和放射科医生(IC/IR)和另外两个特种方面提出了31种脑和颈部肿瘤。在26例病例中进行了肿瘤的解剖学定位,其中22例在左侧(85%),通常是操作员头部最暴露的一侧。除了脑肿瘤外,Marazziti等人还报道了Cog-nive损伤。在通过暴露和不暴露的员工进行的神经心理学测试中,在前组中观察到了言语长期记忆受损,这种能力主要由左hip-Pocampal半球6调节。8。然而,在与寻求映射脑肿瘤横向性的电离辐射无关的研究中,也可以观察到脑损伤的优先侧,即使它在螺柱之间有所不同。Ellingson等人7报道了大脑左侧的胶质母细胞瘤发生率更高,而Larjavaara等8观察到右半球的胶质瘤发生了重大发生(51%)。横向性可能是由于几个因素,即遗传学,病变发生时的年龄,细胞外环境,代谢等。因此,除了暴露于辐射外,在IC/IR中报告的脑病变中观察到的侧向性可能具有起源。也有趣的是,与假定的核/铀循环工人同类假定的低放射敏感性相反,尽管未观察到的相对多种相关的事实,但由于未观察到的相对多数事实。此外,低剂量似乎在神经系统和垂体12中的良性肿瘤的发展中起作用,以及细胞和
摘要:脑瘤是脑中异常细胞的生长,也可能导致一种致命的疾病,即癌症。由于 MRI 图像对噪声和环境因素的敏感性,脑瘤的早期诊断非常困难。脑瘤的主要原因是脑细胞的进展受阻。许多卫生组织已经将脑瘤确定为世界上造成大量死亡的第二大争议性肿瘤。脑瘤可以识别多种症状,包括癫痫发作、情绪变化、行走和听力、视力、肌肉运动困难等。脑瘤可以识别多种症状,包括癫痫发作、情绪变化、行走和听力、视力和肌肉运动困难等。脑瘤分为神经胶质瘤、髓母细胞瘤、室管膜瘤、中枢神经系统淋巴瘤和少突胶质细胞瘤。在原发期,肿瘤可以切除,但在二期,肿瘤疾病会扩散,因此切除肿瘤后肿瘤很少残留并再次生长,所以这是肿瘤二期最大的问题。尽早发现脑肿瘤非常重要。正确的治疗计划和准确的诊断是提高预期寿命的首要任务。磁共振成像是检测脑肿瘤的最佳方法。由于脑肿瘤及其特性的复杂性,需要一种自动化的脑肿瘤检测系统来在最早阶段检测出肿瘤。由于检测肿瘤的复杂性,人工检查容易出错。我们采用基于深度学习的可分离卷积神经网络从 MRI 图像中检测肿瘤。本文在研究了大量相关研究论文后,回顾了几种成功的算法。大多数研究中的方法包括预处理脑图像、分割、提取特征、聚类和检测肿瘤。根据世界卫生组织和美国脑肿瘤协会的说法,最常见的分类系统使用 I 至 IV 级量表来对良性和恶性肿瘤类型进行分类。在这个量表上,良性肿瘤分为 I 级和 II 级胶质瘤,恶性肿瘤分为 III 级和 IV 级胶质瘤。I 级和 II 级胶质瘤也称为低级别肿瘤,其生长缓慢,而 III 级和 IV 级被称为高级别肿瘤类型,肿瘤生长迅速。如果低级别脑肿瘤得不到治疗,很可能发展成高级别脑肿瘤,即恶性脑肿瘤。II 级胶质瘤患者需要每 6 至 12 个月通过磁共振成像 (MRI) 或计算机断层扫描 (CT) 进行连续监测和观察。脑瘤可以影响任何年龄的任何人,其对身体的影响可能因人而异。关键词 - 脑肿瘤检测、MRI 图像、卷积神经网络 (CNN)、深度学习 (DL)、图像处理、算法。
癌症转移是与晚期实体瘤相关的90%以上的死亡原因[1,2]。肝脏具有丰富的血液动力学特征(门户静脉和动脉系统)和独特的微环境,使其本质上容易受到传播肿瘤细胞的敏感,从而导致11.1%的转移速率为11.1%,是跨质量的最常见靶标之一[3,4]。近年来,原发性恶性肿瘤和肝转移(LM)的发生率有所增加[5]。大约40%的恶性肿瘤患者发育LM [6],这极大地影响了患者的生存[4]。治疗涉及两个方面:原发性肿瘤和LM [7,8]。如果不能通过手术从根本上切除它们,那么从长远来看,即使有各种当前治疗方案,也很难控制晚期癌症的进展[9]。因此,需要对肝转移患者,尤其是多种治疗后的患者进行积极探索有效且毒性较小的组合疗法。免疫疗法的出现在临床实践中取得了巨大的成功,并且从成为一种流行的新疗法转变为许多癌症指南的一线建议[10-14]。迄今为止,美国FDA批准了各种免疫治疗剂,其中最广泛使用的剂是抗PD1-PDL1 [11,15-18]。由于其有利的毒性,临床益处和患者的生活质量,它们通常用于治疗常见恶性肿瘤[19,20]。然而,晚期癌症患者中肝转移的存在将导致对免疫疗法的反应,这是一种免疫抑制作用,在几项研究中已通过调节和激活全身和肿瘤内免疫细胞来证明[21]。此外,巨噬细胞诱导的凋亡消除了肿瘤特异性的CD8+ T细胞,从而促进肝免疫胆脂[22]。因此,尽管一些研究表明,基于ICI的免疫疗法可改善晚期癌症患者的总体生存,但肝转移患者的总体益处较小[23]。因此,有必要通过逆转免疫抑制性肿瘤微环境来将免疫疗法与其他疗法结合起来,以实现协同作用[24-27]。基于ICI的免疫疗法与细胞毒性化学疗法结合使用已被广泛用作标准临床治疗[28]。临床试验数据(Impower150)表明,化学疗法可以在某种程度上提高ICIS在LM患者中的功效[29]。放射疗法在转移性癌症中的局部作用可以刺激全身免疫,而放射疗法与免疫疗法结合在临床实践中更为常见[30]。例如,放疗增强了免疫疗法的全身作用,导致远处转移性癌症的消退[31]。最小消除疗法还显示了LM患者的免疫调节作用[32 - 36],通过暴露与肿瘤相关的抗原暴露了抗肿瘤免疫反应的全身免疫细胞[37]。高强度集中的超声消融最初用于妇科良性肿瘤,例如子宫肌瘤,现在广泛用于治疗晚期和转移性恶性肿瘤,因为它是一种安全的,非交互的治疗[38,39]。hifu可以准确治疗靶向病变并产生热作用(t-hifu),从而诱导肿瘤或机械作用(M-HIFU)的凝血坏死,从而破坏肿瘤并增强
MST / Czarske Lab主席的亲爱的朋友和合作伙伴,测量和传感器系统(MST) / Czarske Lab的主席正在庆祝其成立19周年。我们回顾了一年。对我今年的活动报告是一种极大的荣幸和荣幸。获得了几个新项目。也正在进行一个国际项目。特别是LarsBüttner等人开发的激光轮廓传感器对速度和温度测量的商业成功。转移是与尤利希(Jülich)ILA R&D GMBH公司合作进行的。这项在市场上取得成功的创新获得了贝尔瑟德·莱宾创新奖。CZARSKE实验室的学生和员工今年获得了10多个奖项。总共获得了110多个荣誉,奖品和奖项,其中包括最近获得Katrin Philip 10,000欧元的Berta Benz奖。令人高兴的是,从校友(不来梅的安德烈亚斯·费舍尔)收到了ERC。2017年,日本皇帝在东京开设了国会大会ICO-24,德累斯顿被选为下届世界大会。经过3年的重密集式准备,在Optica,Spie,IEEE,EOS,DGAO,Zeiss,Tu Dresden,ICO,Owls和其他合作伙伴的支持下,由于不幸的是,国会无法举行国会。它被推迟了一年,然后在ICO大会关于数字格式的大会进行了深入的讨论后再次推迟。我们感谢所有支持者和工作人员,尤其是Nektarios Koukourakis和Lars Buettner。2022年,面对面的世界大会ICO-25-owls-16在国际意外的领域和质量中取得了巨大的成功。来自55个国家(非洲,美国,亚洲,澳大利亚,惊人的欧洲)的55个国家的与会者以及具有3个诺贝尔奖获得者的非凡质量密度使我们激动。此外,应分别感谢迈克尔·普菲弗(Michael Pfeffer)和沃尔夫冈·奥斯滕(Wolfgang Osten)对现场组织和科学计划的承诺。有关世界大会ICO-25-OWLS-16-DRESDEN-GERMANY-5-9- 9月2022年的信息,可以在https://wwwww.ico25.org的网站上找到以“光线为前进的社会”的主题。首先,我们只从光遗传学开始,然后与CRTD的遗传实验室进行非常成功的项目合作。今年发表了高质量论文,例如在生命科学联盟中,标题为“通过全息光遗传学跟踪人类干细胞衍生的神经元网络中的连通图”。用于多模纤维传输的新方法用于物理层安全性。使用现代波前塑形技术对纤维或组织中的散射过程的控制为应用的新方向开辟了新的方向。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。 也以第二代量子技术获得了项目。Nektarios Koukourakis博士和Jiawei Sun博士开创了细胞断层扫描,最近获得了大自然家族的出版物。也以第二代量子技术获得了项目。人工智能,机器学习和深度学习正在扮演越来越重要的角色。深度神经网络可以通过无透镜纤维内窥镜来学习光传播,以分类人脑肿瘤。使用超薄内窥镜的恶性肿瘤和良性肿瘤的这种新分化方法有望实时进行晚期医学诊断。来自BMBF的重要资金是由Enowa I,Enowa II,Korona,Quiet,6glife,Gobio等项目实现的。我们喜欢强调国际网络,包括:中国廷华大学Liangcai Cao;奥地利Tu Graz的JakobWoisetschläger; WACLAW URBANCZYK,KINGA×OVENACZ,WROCLAW UNIV。科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。 此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;科学技术;中国技术大学的Jinping Qu;亚当·皮尔斯(Adam Pierce),加州大学伯克利分校; Zeyu Gao,Ping Yang,中国科学院,成都; Danfeng Lu,中国西安技术大学,“自适应光学”,访问研究员(2023-2024)。此外,合作社与美国耶鲁大学一起运行;美国斯坦福大学;