色差共焦技术使用白光源,光线通过具有高度色差的物镜。物镜的折射率将根据光的波长而变化。实际上,入射白光的每个单独波长将在距镜头的不同距离(不同高度)处重新聚焦。当测量样品在可能的高度范围内时,将聚焦单个单色点以形成图像。由于系统的共焦配置,只有聚焦的波长才会高效地通过空间滤波器,从而导致所有其他波长失焦。光谱分析是使用衍射光栅完成的。该技术将每个波长偏离不同的位置,截取一条 CCD 线,这反过来指示最大强度的位置并允许直接对应于 Z 高度位置。
水培养基的吸收和散射特性在水下图像中引起了各种类型的失真,这严重影响了随后加工的准确性和有效性。在水下图像增强中,监督学习算法的应用受到了在实际应用中获得大量水下配对图像的困难的限制。作为解决方案,我们提出了基于水下图像增强方法(urd-uie)的不可详细说明。URD-UIE将内容信息(例如,纹理,语义)和样式信息(例如,色差,模糊,噪声和清晰度)与水下图像中图像(例如,色差,模糊,噪声和清晰度)从水下图像中,然后采用分离的信息来生成目标失真图像。我们提出的方法Urd-UIE采用了无监督的循环一致的对抗翻译体系结构,并结合了多个损失函数,以对每个模块的输出结果施加特定的约束,以确保增强前后水下图像的结构一致性。实验结果表明,在使用不配对数据训练时,URD-UIE技术有效地提高了水下图像的质量,从而显着改善了水下对象检测和语义分割的标准模型的性能。
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部
这款智能 J.Trans® 通用升华系统专为满足您在各种基材上升华的所有需求而设计。它包括各种尺寸和形状,例如标准陶瓷杯、拿铁杯、猫狗碗、瓷砖、照片板、玻璃杯、铝瓶、不锈钢玻璃杯等。除了多功能外,它还具有高质量的打印效果。您会对一次打印多个杯子时没有色差感到印象深刻。该系统特别推荐给想要节省劳动力和空间成本、追求升华基材上最佳效果的客户。
使用光子或电子的成像的空间分辨率从根本上受到用于将信息从Sample运送到检测器的物质的波长的限制。但是,达到分辨率的衍射极限需要无像差的成像系统。在低能电子显微镜中实现原子分辨率的挑战主要来自电子光学元件的aber。尤其是色差,可严重恶化低电子能量的成像性能[1-3]。在1936年奠定了理解和补偿这些像差的基础[4,5]。Scherzer定理确定旋转对称的电子镜头不可避免地是色的和球形的。该定理强调了电子显微镜的临界局限性,为数十年的重新搜索奠定了旨在克服这些固有畸变的阶段。在1947年,可以证明电子透镜中的色差和球形像差可以通过使用时变磁场去除旋转对称性或引入空间电荷来纠正[6]。稍后,实验证明了使用己键纠正器对球形畸变的校正[7,8]。这一突破不仅证明了较早提出的理论提议,而且还实现了分辨率的取代,从而取得了显着的电子显微镜能力。超快电子显微镜提供了出色的时间和空间分辨率[9-11]。最近的研究探索了连贯的通过整合高度相干的场排放源[12-14],像差校正探针和增加的探针电流,可以预期该领域的未来进展。尽管可编程和自适应光学器件(例如空间光调节器(SLM))已彻底改变了光学元件[15],但电子光学元件的可编程和适应性相板的开发仍处于早期阶段[16-23]。
这款智能 J.Trans® 多功能升华系统专为满足您在各种基材上进行升华的所有需求而设计。它包括各种尺寸和形状,例如标准陶瓷杯、拿铁杯、猫狗碗、瓷砖、照片板、玻璃杯、铝瓶、不锈钢玻璃杯等。除了多功能之外,它还具有高质量的打印效果。您会对一次打印多个杯子时没有色差感到印象深刻。该系统特别推荐给想要节省劳动力和空间成本、追求升华基材上最佳效果的客户。
摘要 在本研究中,我们实施了四种不同的机器学习方法来执行 CMYK 和 CIELAB 颜色空间之间的颜色空间转换。我们探索了支持向量回归 (SVR)、人工神经网络 (ANN)、深度神经网络 (DNN) 和径向基函数 (RBF) 模型在实现此颜色空间转换(AToB 和 BToA 方向)方面的性能。本研究使用的数据集是 FOGRA53,它由 1617 个颜色样本组成,这些颜色样本以 CMYK 和 CIELAB 颜色空间值表示。转换模型的精度以 ∆ E ∗ 色差来衡量。此外,在实际应用中,将提出的模型与标准 ICC 配置文件在此颜色空间转换方面的性能进行了比较。结果表明,对于正向转换(CMYK 到 CIELAB),使用 RBF 可获得最高的精度。而对于后向变换(CIELAB 到 CMYK),使用 DNN 可获得最高的准确度。
摘要。微泡作为透镜对于光学和光子应用(例如体积显示器、光学谐振器、将光子元件集成到芯片上、高分辨率光谱、光刻和成像)很有吸引力。然而,由于微泡形成的随机性,在硅片等基板上稳定、合理设计和均匀的微泡具有挑战性。我们描述了基于飞秒激光辐照氧化石墨烯制造的弹性微泡,其体积和曲率可精确控制。我们证明石墨烯微泡具有近乎完美的曲率,使其能够用作反射微透镜,将宽带白光聚焦到超高纵横比衍射限制的光子射流中,而不会产生色差。我们的研究结果为将石墨烯微泡集成为用于微型芯片实验室设备的纳米光子元件的透镜以及高分辨率光谱和成像应用提供了途径。
摘要:渐变折射率透镜中的等离子体片上聚焦对于深亚波长纳米级的成像、光刻、信号处理和光互连具有重要意义。然而,由于等离子体材料固有的强波长色散,等离子体片上聚焦存在严重的色差。利用成熟的平面介质光栅,提出了一种渐变折射率波导阵列透镜(GIWAL),以支持声学石墨烯等离子体极化激元(AGPP)的激发和传播,并实现 AGPP 在 10 至 20 THz 频带内焦点小至约工作波长的 2% 的消色差片上聚焦,得益于 GIWAL 与波长无关的折射率分布。提出了一种理论分析方法,以理解 AGPP 的片上聚焦以及其他光束演化行为,例如高斯光束的自聚焦、自准直和钟摆效应以及数字光信号的空间反转。此外,还展示了 GIWAL 反转空间宽带数字光信号的可能性,表明了 GIWAL 在宽带数字通信和信号处理中的潜在价值。
cc/cs校正的成像允许使用最弹性和非弹性散射电子进行图像形成,而不会因单色而导致的光束强度损失。与成像能滤波器结合使用,可以使用等离子体 - 损坏或核心减脂电子形成原子分辨率EFTEM图像。对于原子分辨率滤波的TEM不仅需要对物镜的色差进行校正,而且成像能量滤波器的性能也必须满足主要是色变形和非异质性的条件。我们显示了用于大型能窗的原子分辨率的石墨烯的能量过滤透射电子显微镜(EFTEM)成像。以前的作品表现出与电离边缘信号(例如硅或钛的L 2,3边缘)的晶格对比[5,6]。然而,发现直接解释化学信息受到较厚样品的动态散射的弹性对比的贡献所阻碍。我们证明,即使在一个光原子薄样品的电离 - 边缘信号中也保留了弹性对比度 - 石墨烯 - 得出结论,任何原子分辨率EFTEM图像都无法用纯化学对比度来解释[7]。