摘要:糖尿病神经病是糖尿病的痛苦并发症,可能会用可可豆荚中的化合物治疗。这项研究研究了可可POD中包含的各种类黄酮(Catechin,Epicatechin,槲皮素,Luteolin,apigenin,naringenin和procyanidin)与规范瞬态受体电位(TRPC6)受体的相互作用。用于预测这些化合物与TRPC6的结合亲和力。这涉及准备类黄酮的分子结构和TRPC6蛋白进行模拟。模拟提供了对类黄酮和TRPC6之间结合效率和相互作用能的见解。的发现表明,procyanidin和槲皮素分别在-7.15 kcal/mol和-6.37 kcal/mol中表现出最高的结合能。procyanidin与氨基酸残基ALA508,ARG609,ARG758,ASN765,ASP530,GLU512,HIS446和MET505相互作用,而槲皮素与Arg758,Asp530,Glu512和Glu524结合。这些结果突出了槲皮素和procyanidin作为糖尿病神经病的TRPC6靶向治疗方法的候选者的潜力。本研究为创建新,有效和安全的糖尿病神经病药物的基础奠定了基础。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
完整作者列表:库马尔,拉吉;密歇根大学,药学科学系 Mondal,Kunal;爱达荷国家实验室,材料科学与工程;北卡罗来纳州立大学,化学与生物分子工程 Panda,Pritam;乌普萨拉大学物理与天文学系 Kaushik,Ajeet;佛罗里达理工大学,自然科学 Abolhassani,Reza;南丹麦大学 - 松德堡,MCI/NanoSYD Ahuja,Rajeev;乌普萨拉大学,物理学和天文学 Rubahn,Horst-Gunter;南丹麦大学、马兹·克劳森研究所、NanoSYD Mishra、Yogendra;南丹麦大学 - 松德堡校区、NanoSYD、马兹·克劳森研究所
微胶囊允许从药物到香水的货物的控制,运输和释放。鉴于微胶囊和其他核心壳结构的各种行业的兴趣,存在多种制造策略。在这里,我们报告了一种依赖温度响应性微凝胶颗粒,聚(N-异丙基丙烯酰胺)(PNIPAM)的混合物和经历流体流体相分离的聚合物的混合物。在室温下,该混合物分离成富含胶体的(液体)和胶体贫困(气体)流体。通过在临界温度上加热样品,其中微凝胶颗粒会急剧收缩并产生更深刻的颗粒室内电势,富含胶体相的液滴变成类似凝胶的液滴。随着温度降低到室温,这些凝胶胶体颗粒的这些液滴会在液滴中重新和相位分离。这种相分离会导致胶体富含胶体的液滴中的胶体贫穷的液滴,并被连续的胶体贫穷相包围。气体/液体/气体全水乳液仅在大多数内液滴逸出前仅几分钟。但是,核壳液滴的胶壳可以通过添加盐来固化。这种方法使用仅使用水性成分的刺激敏感的微凝胶胶体颗粒组成的壳形成核心壳结构,使其对封装生物材料和制造胶囊的胶囊有吸引力,以响应例如温度,盐浓度或pH的变化。
摘要:单光子来源对于推进量子技术至关重要,可扩展的集成是至关重要的要求。迄今为止,大规模光子结构中单光子源的确定性定位仍然是一个挑战。在这种情况下,胶体量子点(QD),尤其是核心/外壳配置,由于其解决方案的加工性而具有吸引力。但是,传统QD通常很小,约为3至6 nm,这限制了它们在大规模光子设备中的确定性位置和实用性。最大的现有核/壳QD是巨型CDSE/CDS QD的家族,总直径约为20至50 nm。推动超过此尺寸限制,我们使用逐步高温连续注射方法引入了巨大CDSE/CDS QD的合成策略,尺寸范围从30到100 nm。电子显微镜揭示了一个一致的六角形钻石形态,由十二个半极化{101̅1}方面和一个极(0001)刻面组成。我们还确定了破坏壳生长的条件,导致缺陷,岛屿和机械不稳定性,这表明将晶体颗粒生长到100 nm以上。厚CD壳在CDSE核上的逐步生长可以使发射QD的合成长度发光寿命为几微秒,并在室温下抑制眨眼。值得注意的是,具有100个CDS单层的QD具有高单光子发射纯度,二阶光子相关G(2)(0)值低于0.2。我们的发现表明,巨大的核心/壳QD可以有效地发出单个光子,这为需要确定性放置单光子源的量子光子应用铺平了道路。
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
随着信息技术迈向大数据时代,传统的冯·诺依曼架构在性能上显示出局限性。计算领域已经在应对访问内存所需的延迟和带宽(“内存墙”)以及能量耗散(“电源墙”)方面遇到了很多困难。这些具有挑战性的问题,例如“内存瓶颈”,要求进行大量的研究投资来开发下一代计算系统的新架构。脑启发计算是一种新的计算架构,为人工智能计算提供了一种高能效和高实时性的方法。脑启发神经网络系统基于神经元和突触。忆阻器件已被提议作为创建神经形态计算机应用的人工突触。在本研究中,对后硅纳米电子器件及其在脑启发芯片中的应用进行了调查。首先介绍了神经网络的发展,回顾了当前典型的类脑芯片,包括以模拟电路为主的类脑芯片和全数字电路的类脑芯片,进而引出了基于后硅纳米电子器件的类脑芯片设计。然后,通过对N种后硅纳米电子器件的分析,阐述了利用后硅纳米电子器件构建类脑芯片的研究进展。最后,对基于后硅纳米电子器件构建类脑芯片的未来进行了展望。
International (Beijing) Corporation 中芯国际集成电路制造(北京)有限公司
左插图)。在高分辨率TEM图像中(图1b),由于pH-PEI锚定在纳米颗粒的表面上,芯和壳表现出明显的衬里差异。电子衍射图像(图1b)和晶格间距(图1c)与CEO 2晶体结构的(111),(200),(220)和(311)晶体平面相匹配。[29,30] Bare CEO 2和CEO 2的XRD模式 @PH-PEI显示了八个衍射峰,与CEO 2的特征结构相对应(PDF#00-004-0593)(图。1d),而CEO 2的衍射峰 @pH-PEI更加清晰,更窄,