评估了有无 CO2 捕获和储存 (CCS) 的生物基芳烃生产方案的技术经济性能和 CO2 当量 (CO2eq) 减排潜力,并将其与化石基芳烃生产方案进行了比较。生物方案包括尾气反应热解 (TGRP)、催化热解 (CP)、热液化 (HTL)、气化-甲醇-芳烃 (GMA) 和呋喃/糠醛的 Diels-Alder 结合木质素的催化热解 (FFCA)。原油基石脑油催化重整 (NACR) 路线的温室气体排放量分别为 43.4 吨 CO2eq/t 芳烃 (NACR-CCS) 和 43.9 吨 CO2eq/t 芳烃。除 HTL 外,所有采用 CCS 的生物质方案均出现负排放,排放量在 −6.1 至 −1.1 t CO2eq/t 芳烃之间,减排成本在 27.7 至 93.3 $/t CO2eq 之间。在有利条件下,采用 CCS 的 GMA(GMA-CCS)排放量最低(−14.6 t CO2eq/t 芳烃),而采用 CCS 的 CP(CP-CCS)减排成本最低(12.3 $/t CO2eq)。目前,除 CP 拥有中试工厂外,所有基于生物质的芳烃生产技术均处于实验室或示范阶段。结果表明,生物基芳烃生产具有合理的减排成本和较低或潜在的负温室气体 (GHG) 排放量,是弥补未来几十年预期芳烃生产短缺的一个有吸引力的选择。
脂肪族烃:烷烃 - 命名法、异构现象、构象(仅乙烷)、物理性质、化学反应(包括卤化、燃烧和热解的自由基机理)。烯烃 - 命名法、双键(乙烯)结构、几何异构现象、物理性质、制备方法、化学反应:氢、卤素、水、氢卤化物(马尔可夫尼科夫加成和过氧化物效应)的加成、臭氧分解、氧化、亲电加成机理。炔烃 - 命名法、三键(乙炔)结构、物理性质、制备方法、化学反应:炔烃的酸性、氢、卤素、氢卤化物和水的加成反应。芳香烃:简介、IUPAC 命名法、苯:共振、芳香性、化学性质:亲电取代机理。硝化、磺化、卤化、Friedel Craft烷基化和酰化、单取代苯中功能团的指导影响。致癌性和毒性。
该仪器是带有内置预浓缩系统的气相色谱仪。碳氢化合物在 Tenax GR 上预浓缩,热解吸并在 EPA624 等效柱上分离,以达到与干扰碳氢化合物的最佳分离。分析由光电离检测器完成。这确保了对苯和其他芳香烃的高特异性灵敏度。在 GC 中使用带有 Windows 的标准工业 PC。这意味着整个 PC 结构也可用于处理测量结果:数据被解释并保存在内部硬盘上。数据也可以通过网络和调制解调器连接传输。除此之外,还提供模拟和数字输出选项,以便使用多种数据协议与其他数据记录系统进行通信。操作简单、可靠性高和维护成本低对我们很重要。借助欧洲国内外的分销商网络,您可以确保您的仪器配有个性化培训,并且如果您遇到问题,可以获得支持以提供帮助。601 空气中的苯、甲苯和二甲苯。
污染物检测需要非常灵敏且具有选择性的仪器和方法,例如色谱法和质谱法。色谱法可以分离分子以识别特定分子(选择性),而质谱仪则可以检测微量物质(低至十亿分之一)。Cotecna 实验室配备了创新技术,可以检测食品中的各种污染物,例如:> 农药残留> 霉菌毒素> 重金属> 工艺污染物(3-MCPD、丙烯酰胺、呋喃等)> 持久性有机污染物(持久性有机污染物、异丙醇、二恶英、多氯联苯等)> 药物> MOSH/MOAH(矿物油的饱和烃或芳香烃)> PFAS/PFOS(全氟和多氟烷基物质,它们是环境中的持久性污染物,可以迁移到食品和饲料中)。
1.1.3 纯物质的化学和物理特性 (a) 描述:无色液体,具有特征芳香烃气味 (Budavari, 1996) (b) 沸点:110.6 ° C (Lide, 1995) (c) 熔点:-94.9 ° C (Lide, 1995) (d) 溶解度:极微溶于水(20 ° C 时为 515 mg/L);溶于丙酮;可与二硫化碳、氯仿、乙醚、乙醇和冰醋酸混溶 (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) 蒸气压:6.4 ° C 时为 1.3 kPa;相对蒸气密度(空气 = 1),3.14 (Verschueren, 1996) (f) 闪点:4.4 ° C,闭杯(Budavari, 1996) (g) 爆炸极限:空气中体积上限 7.0%;下限 1.27% (美国政府工业卫生学家会议, 1992) (h) 换算系数:mg/m 3 = 3.77 × ppm
1.1.3 纯物质的化学和物理特性 (a) 描述:无色液体,具有特征芳香烃气味 (Budavari, 1996) (b) 沸点:110.6 ° C (Lide, 1995) (c) 熔点:-94.9 ° C (Lide, 1995) (d) 溶解度:极微溶于水(20 ° C 时为 515 mg/L);溶于丙酮;可与二硫化碳、氯仿、乙醚、乙醇和冰醋酸混溶 (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) 蒸气压:6.4 ° C 时为 1.3 kPa;相对蒸气密度(空气 = 1),3.14 (Verschueren, 1996) (f) 闪点:4.4 ° C,闭杯(Budavari, 1996) (g) 爆炸极限:空气中体积上限 7.0%;下限 1.27% (美国政府工业卫生学家会议, 1992) (h) 换算系数:mg/m 3 = 3.77 × ppm
ASTM 美国材料与试验协会 ATJ-SKA 含芳香烃的酒精喷射合成煤油 au 任意单位 BOCLE 气缸球润滑性评估器 CAAFI 商用航空替代燃料倡议 CLEEN 持续降低能耗、排放和噪音 CO 一氧化碳 CO 2 二氧化碳 CSD 横截面直径 cSt 厘斯 EI 排放指数 ERC 能源研究顾问 EtOH 乙醇 EU 欧盟 f/a 燃油空气比 FAA 美国联邦航空管理局 FANN 全环形 FFP 适合用途 FSN 燃油喷嘴 FT 费托合成 H 2 氢 HEFA 加氢酯和游离脂肪酸 in. 英寸 IRHD 国际橡胶硬度 LBO 贫油熄火 M 百万 毫米 毫米 NextGen 下一代 NHC 净燃烧热 NOx 氮氧化物 PDI 相位多普勒干涉法 SAF 可持续航空燃料 SH 硫-氢 SMD 索特平均直径 SPK 合成石蜡煤油 UDRI 代顿大学研究研究所 UHC 未燃烧碳氢化合物 美国 美国 WSD 磨痕直径
本研究的主要目的是从 Qua 河沉积物中分离和量化柴油利用细菌,并确定它们对不同浓度柴油的耐受水平。使用标准微生物技术收集和处理样品。然后使用气相转移法进行筛选测试,并在室温(28±2 0 C)下孵育。样品(3)记录的柴油利用细菌数量最高,为 9.7 x 10 3 CFU/g,而样品一(1)记录的最低细菌数量为 6.0 x 10 3 CFU/g。假单胞菌属、藤黄微球菌和芽孢杆菌属是已鉴定的柴油利用细菌分离物。在矿物盐肉汤中对这些分离株对 1%、3%、5% 和 7% 柴油的耐受性进行了测试,通过光密度(OD 600nm)证明,藤黄微球菌对 1%(0.279)、3%(0.253)和 5%(0.154)柴油的生长(OD 600nm)低于假单胞菌属(0.685)、3%(0.483)和 5%(0.466)以及芽孢杆菌属(0.509)、3%(0.452)和 5%(0.390),但在 7%(0.1)时的生长(OD 600nm)略高于假单胞菌属(0.095)和藤黄微球菌(0.093)。在 5% 显著性水平下的方差分析证明,柴油浓度对这些分离株的生长(OD 600nm)存在显著差异。这些结果突出了 Qua 河作为石油生物修复细菌的潜在来源。关键词:柴油利用细菌、沉积物、碳氢化合物降解、细菌鉴定、生物修复介绍沉积物是水生生态系统的主要组成部分,由永久水体叠加而成,无论是海洋、峡湾、湖泊还是水库,通常含有外来和本土有机物,能够刺激水生残留物产生有利反应(Jian 等,2022 年)。与水体的液体部分相比,沉积物区域以生物活动和微生物多样性为主。沉积物与土壤有一些共同的特性,但由于各种原因而与土壤环境不同,其中许多原因有利于栖息在沉积物中的微生物种群。柴油是最复杂的混合物之一,由饱和烃和芳香烃组成。通讯作者电子邮件:ubahchioma3@gmail.com
加工Vinnol®H15/45 m(可再生能量)通常以溶解形式使用。酮和酯是Vinnol®H15/45 m(可再生能量)最常用的溶剂,酮比酯更有效。是真正的溶剂,而三氯乙烯和四氯乙烯仅具有溶胀效应。醇和脂肪液碳氢化合物不会溶解Vinnol®H15/45 m(可再生能量)。芳香烃可以与真实溶剂合并到有限的程度上。vinnol®H15/45 m(可再生能量)可以用单体和聚合物增塑剂(例如邻苯二甲酸盐,脂肪酸盐,sebacates,柠檬酸盐,柠檬酸盐,磷酸盐,环氧化物和氯氧化物氧化物)塑化。vinnol®H15/45 m(可再生能源)与所有其他Vinnol®表面涂层树脂完全兼容。它也与许多丙烯酸聚合物和酮树脂以及一些环氧化物结合在一起。醇酸树脂,硝酸纤维素,聚乙烯基乙酸酯和聚乙烯基丁烷通常与Vinnol®H15/45 m(可再生能量)不相容。我们建议始终检查Vinnol®H15/45 m(可再生能量)与相关聚合物的兼容性。必须在初步测试中检查Vinnol®H15/45 m(可再生能量)与颜料或着色剂的兼容性。某些颜料/着色剂可能会产生触变作用和/或损害粘附。使用含有锌或镉的颜料时必须注意,因为它们会在温度升高时催化VC共聚物的分解。也适用于铁氧化物色素。尽管固有的稳定性良好,但某些应用必须根据Vinnol®H15/45 m(可再生能量)稳定涂层,以针对热和/或紫外线进行稳定。环氧化合物通常足以稳定这些涂层,以防止低热撞击。涉及较高温度的地方,建议使用钙/锌或有机素稳定剂。户外应用需要额外使用紫外线稳定器以及针对这些条件优化的热稳定器。为了避免出现变色的风险,应在制备溶液和随后的产品存储期间避免与铁接触。vinnol®基于表面涂料化合物应存储在涂层容器中。