5 实用直流 SQUID:配置和性能 171 5.1 简介 172 5.2 直流 SQUID 基本设计 175 5.2.1 非耦合 SQUID 175 5.2.2 耦合 SQUID 177 5.3 磁强计 186 5.3.1 概述 186 5.3.2 用于高空间分辨率的磁强计 187 5.3.3 用于高场分辨率的磁强计 188 5.4 梯度计 193 5.4.1 概述 193 5.4.2 薄膜平面梯度计 195 5.4.3 线绕轴向梯度计 198 5.5 1/ f 噪声和在环境场中的操作 200 5.5.1 关于 1/ f 噪声的一般说明 200 5.5.2 临界电流波动 200 5.5.3 热激活涡旋运动 201 5.5.4 涡旋的产生 203 5.5.5 降低涡旋运动产生的 1/ f 噪声 205 5.5.5.1 概述 205 5.5.5.2 涡旋钉扎 205 5.5.5.3 窄线宽器件结构 206 5.5.5.4 通量坝 207 5.6 其他性能下降效应 208 5.6.1 磁滞 208 5.6.2 射频干扰 209 5.6.3 温度波动和漂移 210
本报告借鉴了许多个人的专业知识、建议和见解,包括行业领袖、研究人员和主题专家。沃伦中心衷心感谢以下国际铜业协会澳大利亚分会会员和行业主题专家的采访贡献。 Alan Broadfoot 教授 纽卡斯尔大学纽卡斯尔能源与资源研究所所长 Adrian Beer METS Ignited Australia Ltd 首席执行官 Jacqui Coombes 博士 Amira Global 董事总经理兼首席执行官 Christopher Goodes 博士 墨尔本大学企业教授 Christine Gibb-Stewart Austmine 首席执行官 Jacqui McGill AO C-Suite 执行兼非执行董事 Jacqui McGill Consulting Matt O’Neill 嘉能可 Mt Isa Mines 首席运营官 Helene Bradley 英美资源集团技术与可持续发展传播主管 Martin Smith 必和必拓奥林匹克坝健康与安全主管 Hal Stillman 美国国际铜业协会 (ICA) 技术开发与转让总监 David Thurstun 先生 Ok Tedi Mining Limited 商业战略经理 Osvaldo Urzua 博士 国际顾问和独立采矿专家
本报告借鉴了许多个人的专业知识、建议和见解,包括行业领导者、研究人员和主题专家。沃伦中心非常感谢以下国际铜业协会澳大利亚分会会员和行业主题专家的采访贡献。Alan Broadfoot 教授 纽卡斯尔大学纽卡斯尔能源与资源研究所所长 Adrian Beer METS Ignited Australia Ltd 首席执行官 Jacqui Coombes 博士 Amira Global 董事总经理兼首席执行官 Christopher Goodes 博士 墨尔本大学企业教授 Christine Gibb-Stewart Austmine 首席执行官 Jacqui McGill AO C-Suite 执行和非执行董事 Jacqui McGill Consulting Matt O’Neill 嘉能可 Mt Isa Mines 首席运营官 Helene Bradley 英美资源集团技术与可持续发展传播主管 Martin Smith 必和必拓奥林匹克坝健康与安全主管 Hal Stillman 美国国际铜业协会 (ICA) 技术开发与转让主任 David Thurstun 先生 Ok Tedi Mining Limited 商业战略经理 Osvaldo Urzua 博士 国际顾问和独立采矿专家
自 1967 年以来,康涅狄格河的美洲西鲱种群一直由流域州和联邦渔业机构合作管理。同年,为响应美国国会通过的《1965 年溯河洄游鱼类保护法案》(公法 89-304),成立了“康涅狄格河流域渔业管理政策委员会”。该委员会被更正式的“康涅狄格河大西洋鲑鱼委员会”(CRASC)取代,后者于 1983 年根据国会法案(PL 98-138)成立(Gephard 和 McMenemy 2004),负责协调美洲西鲱的恢复和管理活动( http://www.fws.gov/r5crc/ )。CRASC 美洲西鲱管理计划的既定目标是每年有 150 万至 200 万条鱼进入河口(CRASC 1992)。流域州和联邦鱼类和野生动物机构的各种立法权力,包括恢复和管理美洲西鲱的正式协议,已随着时间的推移获得批准,并列在附录 A 中。以下计划更新了现有的康涅狄格河流域美洲西鲱 CRASC 管理计划(1992 年),以反映当前的恢复和管理优先事项和新信息。附录 B 提供了美洲西鲱生活史和生物学的概述。1966-2015 年期间,成年西鲱返回河口的年估计数量在 226,000 到 1,628,000 之间,年平均为 638,504 条鱼(附录 C)。自 1955 年在霍利奥克大坝建造第一座现代升鱼机以来,进入历史栖息地的途径有所增加,1976 年和 2004 年重建升鱼机后,通道得到了显著改善。自 1980 年以来,由于恩菲尔德大坝的恶化以及在三座主干坝和四座支流坝修建鱼道,进入其他栖息地的途径有所增加。佛蒙特州的贝洛斯瀑布(河流公里 280 公里)已被确定为该物种在主干河流上的历史分布范围,但 1984 年建成的一条鱼道使大西洋鲑鱼能够从该屏障上游通过,现在允许鲱鱼迁徙到大坝以外(图 1;附录 D 和 E)。随着主干坝鱼道的安装,每年鲱鱼洄游的规模从 1967 年到 1992 年有所增加,但从 1992 年开始,其种群数量经历了急剧而出乎意料的下降(Crecco 和 Savoy 2004 年)。 2012-2016 年,霍利奥克捕获的鲱鱼数量有所恢复,因为最近几年,每年的年平均捕获量都超过了 1976-2011 年的平均年捕获量(附录 E)。根据大西洋州海洋渔业委员会 (ASMFC) 的美洲鲱鱼基准库存评估 (ASMFC 2007),目前康涅狄格河美洲鲱鱼种群被认为是稳定的,但丰度水平有所下降。在康涅狄格河,鱼道通过计数(附录 E)是帮助确定成年鲱鱼丰度和随时间变化趋势的重要指标,尽管许多因素都会影响鱼类的通过率和年内及年际数量。其他长期种群监测信息包括康涅狄格州能源与环境部 (CTDEEP) 开展的霍利奥克鱼梯和下游地区的种群结构数据(例如年龄、产卵历史)以及幼年鲱鱼围网调查(附录 F 和 G)。CTDEEP 汇编的其他长期监测数据包括下游商业刺网渔业的上岸量和努力量数据(附录 G)。从 2013 年开始,州政府进行商业(仅限河内)和/或休闲捕捞美洲鲱鱼需要获得大西洋州海洋渔业委员会批准的可持续渔业管理计划(ASMFC 2010 年《鲱鱼和河鲱州际渔业管理计划》第 3 号修正案)。随后,康涅狄格州制定了 ASMFC 批准的可持续渔业管理计划(2012 年),维持了其商业和休闲渔业,并进行捕捞。马萨诸塞州还获准维持允许捕捞的休闲渔业(MADMF 2012)。新罕布什尔州选择不制定可持续发展计划,因此其渔业仅限于捕捞和放生。佛蒙特州不是 ASMFC 的成员,可以自由维持休闲渔业而无需制定可持续发展计划,但遵守了新罕布什尔州的规定。
...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
气候变化是全球紧急事件。我们必须刻不容缓地采取行动保护美国人的生命和未来。从德克萨斯州的休斯顿到加利福尼亚州的天堂,从波多黎各的圣胡安到爱荷华州的达文波特,过去四年经历了创纪录的风暴、毁灭性的野火和历史性的洪水。城市和农村社区都遭受了数百亿美元的经济损失。密歇根州的水坝灾难性地溃坝。佛罗里达州的社区几乎被彻底摧毁。中西部各地农民的庄稼被淹死。成千上万的美国人已经死亡。而特朗普总统仍然冷酷无情地、故意地否认解释为什么这么多人受苦的科学依据。就像美国面临的许多危机一样,气候变化的影响在我们的社会或经济中分布不均。有色人种社区、低收入家庭和土著社区长期以来一直遭受空气污染、水污染和有毒场所造成的不成比例的累积伤害。在联邦政府的资金和政策支持下,高速公路的修建是为了在我们的城市中实施种族隔离。煤炭公司被允许减少或忽视其为退休人员承诺的医疗保健福利和养老金提供资金的义务。从密歇根州弗林特到纳瓦霍族,再到阿拉巴马州朗兹县,数百万美国人无法获得清洁、安全的饮用水,甚至无法获得最基本的废水基础设施。而且
7用于所有故障事件方案8。“经常出现在失败路径中的人”被认为是占领建筑物或其他位于故障影响区内的其他职业地点的人。出于本手册的目的,这应指资源运营所参与的站点人员以外的其他人,并位于与资源运营相关的物业单位和期限上;对于其他时代,这将是“当局中提到的前提”。应该注意的是,尽管这适合根据本手册评估结果类别,但遵守本手册的要求并没有以任何方式限制,修改或更改,但根据相关的健康和安全法案或法规,必须考虑需要考虑现场人员安全的任何其他要求。9在考虑对地下水的潜在影响时,在所有情况下都没有设想需要进行全面的水文地质评估。对地下水系统的潜在影响的任何考虑都应考虑潜在接收含水层的水质以及储存在受管坝中的流体质量。在资源运营周围地区的现有地下水降低(例如在评估地下水系统上的大坝渗漏后的结果时,还可以考虑由于矿坑或地下矿山脱水而导致的逐渐减少。10'对人类健康的不利影响意味着对人类健康的生理影响,并且不包括对下游水的质量的影响,而下游水的质量仅会对口味产生负面影响,并且不太可能导致人们身体不适。
Kathy Shipp,MSN,APRN,FNP,总裁,代表 APRN 实践,拉伯克 Allison Porter-Edwards,DrPH,MS,RN,CNE,CDDN,FAAN,副总裁,代表 BSN 教育,贝莱尔 Kathy Boswell,MSN,RN,代表 ADN 教育,矿泉城 Manny Cavazos,JD,CPA,代表消费者,马诺 Daryl Chambers,BBA,代表消费者,大草原城 Laura Disque,MN,RN,CGRN,代表 RN 实践,爱丁堡 Carol Kay Hawkins-Garcia,MSc,BSN,RN,代表 RN 实践,圣安东尼奥 Mazie M. Jamison,文学士,文学硕士,代表消费者,达拉斯 Ken D. Johnson,BSN,RN,代表 LVN 教育,圣安吉洛 Mary Grace Landrum,MEd,文学士,代表消费者,休斯顿 Nancy Lewis, LVN,代表 LVN 实践,布坎南坝 Kathy Leader-Horn,LVN,代表 LVN 实践,格兰伯里 Dru Riddle,博士,DNP,CRNA,FAAN,代表 APRN 实践,沃斯堡 Melissa D. Schat,LVN,代表 LVN 实践,格兰伯里 Rickey “Rick” Williams,AA,代表消费者,基林
将通用科学知识对特定于上下文的农民知识的抽象背景化是农民的创新过程中的必要步骤,并且可以使用农作物和农场模型来实现。这项工作探讨了基于农民对环境和实践的描述来模拟大量场景的可能性,以便将每个参与的农民讨论的讨论背景。它提出了一个新的框架,该框架由六个阶段分开的六个动作组成,即第一阶段 - 向农民的世界出发:(i)项目初始化; (ii)确定在农民背景下锚定的农艺问题; (iii)表征环境,管理选项和描述正在考虑的系统的指标;第二阶段 - 研究人员的世界:(iv)作物模型参数化; (v)将模型输出转换为农民支持的指标;和第三阶段 - 返回农民的世界:(vi)与农民探索情境化的管理选择。在此过程中创建了两个通信工具,一个包含模拟结果以供应讨论的结果,而第二个则是创建其记录的第二个通信工具。框架的有用性是用肥料和堆肥应用来探索土壤生育能力管理的,以高粱生产在苏德诺 - 撒哈利亚布尔基纳·菲萨(Sudano-Sahelian Brkina Faso)的小小的背景下。该框架与15名农民的应用提供了证据,证明了农民和农艺学家对通过更好的有机修正管理进行改善作物系统绩效的选择的理解。这种方法使农民能够识别并与模拟的方案相关,但强调了有关如何使作物模型输出适应特定情况的审讯。虽然在现场层面上与战术变化有关的问题应用,但该框架为农民(例如农场重新配置)探索更广泛的问题提供了机会。