石墨烯的氧化形式氧化石墨烯 (GO) 是药物载体应用中最受研究的石墨烯形式,因为它具有生产成本低且易于在水溶液中分散的特点。29 然而,之前的生物毒性研究表明,GO 会诱导活性氧 (ROS) 的产生,从而导致几种细胞模型 40 – 43 和斑马鱼的细胞毒性。44 – 48 研究表明,细胞毒性程度与人脐静脉内皮细胞 (HUVEC) 中 GO 的氧含量相关。49 此外,GO 生产过程中氧化过程中产生的残留杂质 50 – 52 也可能是毒性来源。与 GO 相反,由于原始石墨烯的生产工艺相对复杂,因此作为纳米药物载体的研究较少。53 此外,其疏水性 54 导致其在水溶液中的稳定性低。最近,出现了更高产量的原始石墨烯生产工艺,55
摘要这项研究的目的是为任何量热法制造一种新型的温度传感器。引入了一种新的混合溶液方法,以制备聚苯乙烯/多壁碳纳米管纳米管纳米复合样品,其重量百分比为0.05、0.1、0.1、0.28、1和2的MWCNT。为了证明包含在聚合物基质中的分散状态,应用了SEM分析。另外,进行了XRD和拉曼光谱分析。在包含的约0.28重量%的情况下,研究并实现了电渗透阈值。最后,从室温到〜100ºC的样品测量样品的电阻。因此,对于大多数纳米复合材料样品,在T g之前和之后观察到正温系数和负温度系数效应。在20-50ºC下实现了电阻 - 温度曲线的最佳线性响应,该曲线使用二阶拟合曲线可以用来将T0〜70ºC用光。结果表明,在渗透阈值附近的聚苯乙烯/多壁碳纳米管纳米复合材料可以用作量热法的温度传感器。关键字:温度传感器,量热法,电渗透阈值,聚苯乙烯/MWCNT纳米复合材料,电阻。1。在过去的二十年中,由于纳米填充剂(例如碳纳米管(CNT))增强的聚合物材料(CNTS)吸引了科学和工业社区的广泛关注。CNT是聚合物基质的理想增强填充剂,因为它们的纳米尺寸,高纵横比,更重要的是它们出色的机械强度,电气和导热率[1]。聚合物-CNT纳米复合材料在柔性电池,太阳能电池,抗固定器件,电磁干扰屏蔽,辐射屏蔽和电池,超电容器,超电容器,压电电气传感器,温度传感器和辐射传感器[2-11]中具有巨大的潜在应用[2-11]。
最受关注的案件是涉及奥施康定制造商普渡制药的案件。该公司及其所有者萨克勒家族已与 23 个州和 2,000 多个城市和县达成临时和解。协议规定,该公司将宣布破产并解散(该公司此后已申请第 11 章破产);将成立一家由一组受托人管理的新公司,并将继续销售奥施康定,销售收入将归和解中的原告所有。普渡制药还将捐赠用于戒毒和过量用药的药物。据称,这笔交易总额高达 100 亿至 120 亿美元,是迄今为止最大的一笔赔付。然而,和解协议并不包括不当行为声明。(Lopez 2019)普渡制药的破产申请冻结了针对他们的诉讼,并将索赔转移到破产法庭。 (Joseph 2019)联邦破产法官将针对该公司的所有诉讼暂停至 4 月,以便双方继续努力达成和解。此前,该公司同意了一系列延长诉讼期限的条件,包括为针对阿片类药物危机的组织提供 2 亿美元的资金。(Mulvihill 2019)普渡制药此前在俄克拉荷马州以 2.7 亿美元达成和解,并在北达科他州的诉讼被驳回。(Bernstein、Davis 等人 2019)
转化率较高。所得聚合物可溶于氯仿、四氢呋喃 (THF) 和甲苯等普通有机溶剂,且具有由其 1H NMR 和 IR 光谱 (图) 所示的推测结构。聚合物的 1H-NMR 光谱显示苯基质子 (7.6-7.1 ppm)、乙烯基质子 (5.3-4.7 ppm) 和其他脂肪族质子 (2.7-1.3 ppm) 的正确开环单体比例为 10: 2: 10。聚合物的 IR 光谱在 911 cm -1 和 742 cm -1 处显示吸收带,这分别归因于 =CH 反式和顺式双键的平面外弯曲。总之,DPCO 是通过 PCON 的 cx;'-芳基化和还原制备的。通过 WCI4(OArh/Pb(Et)4 催化体系对 DPCO 进行 ROMP,得到 1:2 的丁二烯和苯乙烯交替共聚物。值得注意的是,这些共聚物在整个链上具有均匀的组成,而传统的苯乙烯和丁二烯共聚物中存在一些嵌段。所得聚合物为塑料材料,玻璃化转变温度约为 36.4°C。这与 Wood 方程对在 soc 下制备的丁二烯和苯乙烯共聚物的预期值一致。
摘要。聚合物纳米复合材料是晚期纳米材料,与纯聚合物相比,各种机械,热和屏障性能都具有显着改善。聚苯乙烯/氧化铝纳米复合材料是通过超声辅助溶液铸造方法制备的,在填充载荷范围为0.2至2%,并且在不同的超声频率下,即。58 kHz,192/58 kHz,430 kHz,470 kHz和1 MHz。对复合材料进行了机械性能测试(拉伸和撞击测试)和空化侵蚀测试,以研究功能性能的增强。填充物分散体。通过SEM分析和复合材料的功能性增强,研究了频率对基质中填充物分散体的影响。与纯种聚合物相比,以双(高/低)频率(192/58 kHz)制备的复合材料在低填充载荷下显示出更好的性质增强,并在没有超声波的情况下制备了复合材料,从而增强了超声辅助合成的发现,是纳抗体的合成的有益方法。关键字:超声;纳米复合材料;分散;机械性能;空化侵蚀
美国商务部,Ronald H. Brown,部长 技术管理局,Mary L. Good,技术部副部长 国家标准与技术研究所,Arati Prabhakar,主任
