摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
但是现在,尽管文字处理尚未完成分析,但可用性的前沿已经因为新应用程序和新界面技术的开发和引入而不断向前推进。电子邮件和计算机会议支持等通信应用程序所带来的可用性挑战远比文字处理向非程序员扩展所带来的挑战更加多样化。在当前技术中,多个用户通过极其不同的工作站类型协作访问多个应用程序。就在这些新领域的可用性问题得到阐述和探索的同时,前沿原型正在引入手势(例如手写)和语音输入以及交互式视频输出。这些新发展正在整个行业中以更快的速度、更广泛地发生,并随着时间的推移影响更多的用户。
简介:基于运动的脑机接口 (BCI) 利用执行或尝试运动期间产生的大脑活动来控制应用程序。通过依赖自然运动过程,这些 BCI 与其他 BCI 系统相比提供了更直观的控制。然而,利用脑电图 (EEG) 信号的非侵入式基于运动的 BCI 通常需要大量训练数据才能在检测运动意图方面达到适当的准确度。此外,运动障碍患者需要基于提示的范例来指示与运动相关的任务的开始。这样的范例往往会在试验之间引入较长的延迟,从而延长训练时间。为了解决这个问题,我们提出了一种新颖的实验范例,可以在 18 分钟内收集 300 次提示运动试验。
1沃伦·阿尔珀特医学院,布朗大学,普罗维登斯,RI 02912,美国; CHRISTOPHER_CHANG@BROWN.EDU 2美国马萨诸塞州波士顿的Brigham和妇女医院神经外科部vchavarro@mgh.harvard.edu(V.S.C.); jgerstl@bwh.harvard.edu(J.V.E.G。); sarahblitz@hms.harvard.edu(S.E.B。); lspanehl@bwh.harvard.edu(L.S.); sgupta@bwh.harvard.edu(S.G.); dmazzetti@bwh.harvard.edu(D.M.); oarnaout@bwh.harvard.edu(O.A。); trsmith@bwh.harvard.edu(T.R.S.); jbernstock@bwh.harvard.edu(J.D.B.)3哈佛大学,哈佛大学,马萨诸塞州,马萨诸塞州02115,美国4神经外科系,罗斯托克大学,18055年,德国罗斯托克; daniel.dubinski@med.uni-rostock.de(D.D. ); florian.gessler@med.uni-rostock.de(F.A.G。) 5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。3哈佛大学,哈佛大学,马萨诸塞州,马萨诸塞州02115,美国4神经外科系,罗斯托克大学,18055年,德国罗斯托克; daniel.dubinski@med.uni-rostock.de(D.D.); florian.gessler@med.uni-rostock.de(F.A.G。)5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。
b"作者姓名:Divyanshu Tak 1,2, ;Biniam A. Garomsa 1,2 ;Tafadzwa L. Chaunzwa 1,2,10 ;Anna Zapaishchykova 1,2, ;Juan Carlos Climent Pardo 1,2 ;Zezhong Ye 1,2, ;John Zielke 1,2 ;Yashwanth Ravipati 1,2 ;Sri Vajapeyam 4 ;Ceilidh Smith 2 ;Kevin X.Liu 4 ;Pratiti Bandopadhayay 4,5 ;Sabine Mueller 9 ;黄蒙德4,5,11; Tina Y. Poussaint 4,5;Benjamin H. Kann 1,2,5 * 作者隶属关系:1. 哈佛医学院麻省总医院医学人工智能 (AIM) 项目,美国马萨诸塞州波士顿 2. 哈佛医学院丹娜—法伯癌症研究所和布莱根妇女医院放射肿瘤学系,美国马萨诸塞州波士顿 3. 马斯特里赫特大学 CARIM & GROW 放射学和核医学系,荷兰马斯特里赫特 4. 波士顿儿童医院,美国马萨诸塞州波士顿 5. 丹娜—法伯癌症研究所,美国马萨诸塞州波士顿 6. 密歇根州立大学,美国密歇根州东兰辛 7. 费城儿童医院,美国费城 8. 宾夕法尼亚大学,美国宾夕法尼亚州 9. 加利福尼亚大学神经内科、神经外科和儿科系,美国旧金山 10. 纪念斯隆凯特琳癌症中心中心,纽约,美国 11. 哈佛医学院布莱根妇女医院放射科,马萨诸塞州波士顿。 * 通讯作者 通讯地址:Benjamin H. Kann,医学博士 医学人工智能 (AIM) 项目,麻省总医院布莱根,哈佛医学院,221 Longwood Avenue,Ste 442,波士顿,马萨诸塞州 02115,美国 电子邮件:Benjamin_Kann@dfci.harvard.edu 摘要 应用于脑磁共振成像 (MRI) 的人工智能 (AI) 有可能改善疾病的诊断和管理,但需要具有可泛化知识的算法,以便在各种临床场景中表现良好。到目前为止,该领域受到有限的训练数据和特定于任务的模型的限制,这些模型不能很好地应用于患者群体和医疗任务。基础模型通过利用自我监督学习、预训练和有针对性的适应,提出了一个有前途的范例来克服这些限制。在这里,我们介绍了脑成像自适应核心 (BrainIAC),这是一种新颖的基础模型,旨在从未标记的脑 MRI 数据中学习广义表示,并作为各种下游应用适应的核心基础。我们在 48,519 个脑 MRI 上进行了广泛任务的训练和验证,证明 BrainIAC 优于局部监督训练和其他预训练模型,特别是在低数据设置和高难度任务中,允许在其他不可行的情况下应用。
这项研究解决了通过将高级机器学习范式与妇科专业知识相结合来增强体外受精(IVF)成功率预测的研究问题。该方法涉及对2017年至2018年和2010 - 2016年全面数据集的分析。使用了机器学习模型,包括逻辑回归,高斯NB,SVM,MLP,KNN和合奏模型,例如随机森林,Adaboost,Logit Boost,Rus Boost和RSM。关键发现揭示了IVF成功预测中患者人口统计学,不育因子和治疗方案的重要性。值得注意的是,集合学习方法表现出很高的精度,而Logit提升的精度为96.35%。这项研究的含义涵盖了临床决策支持,患者咨询和数据预处理技术,突出了个性化的IVF治疗和持续监测的潜力。该研究强调了妇科医生和数据科学家之间合作的重要性,以优化IVF结果。前瞻性研究和外部验证被认为是未来的方向,有望进一步彻底改变生育治疗,并向面临不育挑战的夫妇提供希望。
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FLayout-of- Masudas-navigation-buoy-based-on-10-On-the-right-hand-side-details- of_fig1_281307478&psig=AOvVaw3SxDnTm6sc5hqJZ mUdYEU&ust=1709807453875000&source=images& cd=vfe&opi=89978449&ved=0CBEQj xqFwoTCMje0qG334QDFQAAAAAdAAAAABAD 上图是一个简单的水上浮标,展示了水上浮标的基本结构和机制。水上浮标必须为柱形,根据简介,浮标的高度必须在海面以上 1400 毫米至 1800 毫米之间,直径为 500 毫米,高度可以用肉眼看到并配有照明,这符合 2011 年 9 月发布的 BS ISO 20712-1:2008 标准。该标准于 2019 年更新为 BS ISO 7010:2019 图形符号 - 安全颜色和安全标志。浮子组件浮子组件提供特定的浮力水平,如果它排出的体积合适,密度正确,包括整个浮标的质量。简介指出浮标必须易于固定,浮动组件必须由易于固定且高度坚固的材料制成。浮动组件的例子包括 (HDPE) ope 浮子由压缩成型的聚氯乙烯 (PVC) 制成。一些浮子可以由硬质聚苯乙烯(PS 泡沫塑料)、FKM 橡胶和 VMQ 橡胶制成,如果用空气(特别是氮气)充气以帮助漂浮。
00591-0 DOI 10.1007/s11786-024-00591-0 ISSN 1661-8270 ESSN 1661-8289 Publisher: Springer This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the来源,提供指向Creative Commons许可证的链接,并指示是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
USask 的临时人工智能 (AI) 原则和指南 i USask 的 AI 原则旨在确保以支持 USask 的使命、愿景、价值观和战略目标的方式合乎道德、有效和负责任地使用 AI,并维护所有利益相关者的信任和信心。这些原则和指南旨在指导我们提供、支持和使用 AI 工具开展研究、教学、管理和支持服务。重要的是,当 AI 成为研究或教学的主题时(例如,关于 AI 的研究或教学),其中一些原则和指南可能不适用。这些活动被视为通过其他大学政策和实践以及学术自由的权利和义务进行管理。USask 坚持包括合议和包容性 ii 在内的核心价值观。重要的是,我们的流程包括研究人工智能 (AI) 使用教育特定原则的有影响力的例子,包括《北京人工智能与教育共识》 iii 和世界经济论坛的《教育人工智能七项原则》 iv 。这些框架要么以联合国教科文组织的《人本主义人工智能十大核心原则》为基础,要么以此为参考。以这些国际范例为参考点,萨斯喀彻温大学人工智能原则是通过一个强大而反复的过程制定的,该过程涉及来自我们校园各地的社区成员。萨斯喀彻温大学的人工智能原则和实践对于萨斯喀彻温大学的人工智能使用具有包容性、响应性和有效性。我们将继续采取持续响应的方式,以不断发展的人工智能原则和指导方针——考虑大学社区的反馈和人工智能技术的进步——以确保人工智能的使用保持有效、相关,并与我们大学不断变化的需求和价值观保持一致。随着萨斯喀彻温大学社区成员得到支持,将他们的人工智能实践与这些原则和指导方针保持一致,将培养一种负责任和道德的人工智能文化。萨斯喀彻温大学将接受我们作为人工智能使用方面的批评者和社会良知的角色,将公开其人工智能使用的原则和指导方针,并随着原则和指导方针的不断发展及时提供更新。重要的是,这些原则代表了我们在快速变化的环境中使用人工智能的愿望。道德和负责任的使用 1. 负责任。人类有意的选择和行动引领着我们对人工智能的使用,而人工智能
• 战略研究与规划:进行深入研究并制定战略计划,以成功启动项目。这包括进行市场分析、确定可再生能源的行业趋势以及创建与组织目标一致的全面路线图。 • 项目启动和发展:领导项目的启动和发展,其中包括全面的合同流程和积极接触相关社区和组织。 • 合同和外展:监督项目启动的各个方面,重点关注有效的合同和广泛的外展工作。 • 社会公平融合:确保将社会公平原则融入项目开发和交付的所有方面,使所有社区,特别是服务不足的社区都能获得可再生能源机会。 • 可持续发展战略计划:推动战略计划,这些计划不仅符合 BEF 对可持续发展的承诺,而且还能扩大我们在不同社区的影响力。