茶是世界上最广泛的饮料之一。它是生物活性化合物的丰富来源,包括epigallocatechin Gallate(EGCG),鲁丁蛋白,槲皮素,食道酸和单宁酸,它们已被广泛研究,以实现其潜在的健康益处。茶厂(Camellia sinensis)属于Camellia L.属和家族剧院。与其他植物相比,茶厂的次要代谢物不仅具有独特的治疗质量,而且使人类健康受益。作为重要的经济植物,已经在许多领域进行了茶,包括健康,粮食生产和文化。这些代谢产物具有抗氧化剂,抗菌和抗炎性特性,这可能有助于降低慢性疾病的风险,例如心血管疾病,癌症和神经退行性疾病。茶厂是多年生和
摘要古老的茶厂是珍贵的自然资源和茶叶遗传多样性的来源,对于研究植物的进化机制,多样化和驯化而具有巨大的价值。古老的茶叶植物之间的总体遗传多样性以及自然选择期间发生的遗传变化仍然很少理解。在这里,我们报告了由120个古代茶厂组成的八个不同群体的基因组重新陈述:来自吉州省的六组和云南省的两个团体。基于8,082,370个鉴定的高质量SNP,我们构建了系统发育关系,评估了种群结构并进行了全基因组关联研究(GWAS)。我们的系统发育分析表明,120个古老的茶厂主要聚集在三组和五个单个分支中,这与主成分分析(PCA)的结果一致。基于遗传结构分析,将古老的茶水进一步分为七个亚群。此外,发现古老的茶叶植物的变化不会因外部自然环境或人工育种的压力而降低(非同义/同义词= 1.05)。通过整合GWA,选择信号和基因功能预测,四个候选基因与三个叶片性状显着相关,并且两个候选基因与植物类型显着相关。这些候选基因可用于进一步的功能表征和茶植物的遗传改善。
摘要:半胱氨酸在植物的硫代谢网络中起关键作用,密切影响有机硫的转化率以及植物承受非生物胁迫的能力。在茶厂中,丝氨酸乙酰转移酶(SAT)基因出现是半胱氨酸代谢的关键调节剂,尽管显然缺乏全面的研究。利用隐藏的马尔可夫模型,我们确定了茶叶基因组中的七个CSSSAT基因。生物信息学分析的结果表明,这些基因的平均分子量为33.22 kd,簇分为三个不同的组。关于基因结构,CSSSAT1在十个外显子中脱颖而出,比其家庭成员高得多。在启动子区域中,与环境反应性和激素诱导相关的顺式作用元素占主导地位,分别占34.4%和53.1%。转录组数据显示,在各种应力条件下(例如PEG,NaCl,Cold,Meja)及其在茶厂中的组织特异性表达模式,CSSSAT的复杂表达动力学。值得注意的是,QRT-PCR分析表明,在盐应力下,CSSSAT1和CSSSAT3表达水平显着增加,而CSSSAT2表现出下调趋势。此外,我们克隆了CSSSAT1 -CSSSAT3基因,并构造了相应的原核表达载体。产生的重组蛋白在诱导后显着增强了大肠杆菌BL21的NaCl耐受性,这表明CSSSATS潜在的应用在增强植物抗性抗性的抗性中。这些发现丰富了我们对CSSSATS基因在压力耐受性机制中扮演的多方面角色的理解,为未来的科学努力和研究追求奠定了理论基础。
本文简要回顾了马拉维茶业的物质和能源流,以发现机遇并减少其对环境的影响。回顾还详细介绍了物质和能源流分析的概念和方法以及应用研究。使用 CML 方法,通过生命周期评估方法计算环境影响。结果表明,所研究工厂的绿叶消耗量为每千克成品茶 (MT) 4.19 至 6.33 千克绿叶,平均每千克成品茶消耗 4.96 千克绿叶,而肯尼亚和斯里兰卡茶厂分别为 4.5 千克和 4.66 千克绿叶。马拉维茶厂的平均木材消耗量为每千克成品茶 3.35 千克,特定水消耗量为每千克成品茶 1.92 至 8.32 千克。此外,八家工厂的温室气体 (GHG) 排放量平均值为 4.32 千克 CO 2 -eq/kg MT,而肯尼亚和斯里兰卡类似工厂的排放量分别为 2.27 和 2.7 千克 CO 2 -eq/kg。温室气体的主要排放源是锅炉燃料燃烧和备用柴油发电系统。研究表明,全球变暖对环境的影响最大 (88%),其次是酸化 (6%) 和富营养化 (2%),而对人类的毒性最小 (<1%)。研究结果表明,MEFA 如何及早识别环境问题,以及如何利用它确定现有工厂改善运营的优先事项。
使用MACC和MCA分析对能源领域的缓解方案进行识别和优先排序,省级温室气体排放清单,实施缓解举措的MRV框架,为斯里兰卡建立实用的NAMA实施机制,国家NAMA登记册和茶厂1300个HEM / VFD试点示范,1000个生物消化器单元,150个家用太阳能光伏净计量系统,目标是减少16,126吨二氧化碳当量排放,是该NAMA的主要成果。
摘要:在当今瞬息万变的经济和商业环境中,肯尼亚的茶厂通过满足客户需求的产品和服务来争夺客户、收入和市场份额。肯尼亚茶叶生产业自 2000 年以来一直处于衰退状态,最终导致大多数茶园关闭。肯尼亚穆兰加县的茶叶加工厂尤其面临着前所未有的挑战;消费者需求和习惯的转变、气候变化、资源限制和农业机械化正在汇聚在一起给行业带来压力。因此,本研究旨在调查成本领先战略对肯尼亚穆兰加县茶叶加工厂绩效的影响。本研究采用描述性调查设计。研究对象为肯尼亚穆兰加县的 9 家茶叶加工厂。受访者总数为 407 人,包括管理人员和支持人员。本研究采用分层抽样法和简单随机抽样技术来选择受访者。使用描述性统计数据分析定量数据。研究建立了差异化战略、成本领先战略和重点战略对组织绩效的正相关和显著关系。这项研究确定了成本领先战略与组织绩效之间的积极且显著的关系。研究得出结论,成本领先战略注重资源组织。目标是通过围绕当前生产方法组织所有潜在资源,以尽可能低的成本生产商品或服务。研究建议,茶厂应以较低的价格提供具有质量竞争优势的产品。进行研发 (R&D) 突破,以推进技术,降低生产或分销成本。
非常关注植物提取物在牲畜和家禽生产中的应用,作为被禁止添加剂(例如抗生素)的替代品。植物提取物是从植物材料中提取的天然化合物或成分的混合物。由于存在众多具有药理特性的生物活性化合物,因此它们具有巨大的研究潜力。此外,由于它们的天然,可生物降解的性质以及减少对合成化学物质的依赖的能力,它们被认为是可持续和环保的选择。有关植物提取物在青贮饲料保存中施用的庞大科学研究已经报道了这种富集的植物的潜在抗真菌剂(Cock and van Vuuren,2015年),芦荟提取物具有广泛的微生物抑制活性,据报道它具有明显的抑制作用,并且对我的抑制作用具有明显的抑制作用,因此(命中率)(命中率)(命中率)(命中率)。 Al。,2013)。茶厂的有机简易提取物含有各种天然非离子表面活性剂,它们可以与某些抗菌剂合作以拮抗真菌(Hao等,2010)。一些研究报告说,ficus hirta vahl的乙醇提取物
茶厂疾病对全球茶业构成了重大威胁,从而影响了产量和质量。早期发现和准确的诊断对于有效的疾病管理和防止广泛爆发至关重要。主要依赖专家视觉检查的传统方法可能是主观的,耗时的,并且可能无法检测到微妙或早期症状。此外,可以限制获得专业植物病理学家的机会,尤其是在远程茶叶地区。该项目探讨了人工智能,特别是深度学习技术的应用,以自动化茶叶疾病检测过程。通过利用卷积神经网络(CNN)的力量,该系统非常适合图像分析,该系统旨在分析茶叶的图像并将其准确地分为不同的疾病类别。在标记的茶叶图像的各种数据集上训练CNN,包括各种疾病和健康的样本,使模型可以学习复杂的模式和特征,以表明特定疾病。这种自动化方法有望提高诊断准确性,减少对专家视觉检查的依赖,并有可能提高茶农及时有效的疾病管理策略的可及性,最终有助于增强茶的生产和经济可持续性。
类黄酮构成茶厂叶片(茶花)的主要营养素。迄今为止,尽管众所周知,干旱应力会对茶叶中类黄酮的生物合成产生负面影响,但这种现象背后的机制尚不清楚。在此,我们报告了一种蛋白质磷酸化机制,该机制对干旱条件下茶叶中类黄酮的生物合成负面调节。转录分析表明,类黄酮生物合成的基因表达下调以及CSMPK4A的上调编码叶片中丝裂原激活蛋白激酶的CSMPK4A。荧光素酶互补和酵母双杂交测定法表明,CSMPK4A与CSWD40相互作用。在体外,特异性蛋白质免疫和蛋白质质谱分析的磷酸化测定法表明CSWD40的SER-216,THR-221和SER-253是CSMPK4A的潜在磷酸化位点。此外,在干旱条件下,蛋白质免疫分析发现了茶叶中CSWD40的磷酸化水平升高。三个磷酸化位点的突变产生了去磷酸化的CSWD40 3A和磷酸化的CSWD40 3D变体,这些变体被引入拟南芥TTG1突变体中。代谢分析表明,TTG1中的花色蛋白蛋白和原蛋白素含量较低:CSWD40 3D
抽象茶厂在生物活性化合物中丰富,包括类黄酮,氨基酸,生物碱,萜类化合物和脂质,这些主要影响茶质量和口味。尽管有许多关于不同茶品种的代谢产物的研究,但其生物合成和调节的组成差异仍然是未知的。在这项研究中,使用靶向的代谢组学广泛的代谢组学,包括192个黄酮和28 neminds和28 amino,从根尖的芽中检测到505种代谢产物('shuchazao':'scz':'scz':'scz':'huangkui':'hk'和'hk'和'zijuan':'zj':'zj'。代谢产物分析表明,黄酮醇和花色苷主要以三种品种的糖苷形式分布,其中花青素及其糖苷主要在“ ZJ”中积累,表明与颜色属性有相关性。EGCG成为三种品种中最丰富的Flavan-3-ols化合物。l-茶氨酸代表主要的游离氨基酸,与1叶相比,主要集中在顶端芽中,但同样,脂质与游离氨基酸相似,主要是在三个品种的顶端芽中积聚。这些发现为遗传和代谢物多样性提供了宝贵的见解,从而增强了我们对茶叶特定代谢物的生物合成的理解。