尽管关于血管和神经网络之间关系的知识正在逐渐被人们所了解,但神经系统疾病的神经中心方法通常导致人们对脑成熟和疾病中脑血管重塑的理解有限。然而,越来越多的证据支持内皮缺陷对神经系统疾病的发生和/或进展有贡献,包括但不限于阿尔茨海默病、多发性硬化症和自闭症谱系障碍。5 – 11 因此,迫切需要实施开源和标准化方法,以便在实验室模型中对脑血管结构进行系统和高通量分析。我们提出了一种简单、可靠且廉价的方案,旨在对固定组织上的小鼠脑内皮网络进行免疫染色,然后进行光学切片荧光,使用计算机方法处理二维或三维 (2D 或 3D) 数字图像。该方案提供了一种无偏量化脑血管结构重要指标的方法。
尽管关于血管和神经网络之间关系的知识正在逐渐被人们所了解,但神经系统疾病的神经中心方法通常导致人们对脑成熟和疾病中脑血管重塑的理解有限。然而,越来越多的证据支持内皮缺陷对神经系统疾病的发生和/或进展有贡献,包括但不限于阿尔茨海默病、多发性硬化症和自闭症谱系障碍。5 – 11 因此,迫切需要实施开源和标准化方法,以便在实验室模型中对脑血管结构进行系统和高通量分析。我们提出了一种简单、可靠且廉价的方案,旨在对固定组织上的小鼠脑内皮网络进行免疫染色,然后进行光学切片荧光,使用计算机方法处理二维或三维 (2D 或 3D) 数字图像。该方案提供了一种无偏量化脑血管结构重要指标的方法。
要测量的光脉冲将投射到缝隙上,并将镜头聚焦于条纹管的光电极上的光学图像中。每次稍微更改时间和空间偏移,四个光脉冲通过缝隙引入并进行到光电阴道上。在这里,光子被转换为与入射光强度成比例的许多电子。四个光脉冲被顺序转换为电子,然后将其加速并向磷光筛进行进行。由于从四个光脉冲中产生的一组电子传递在一对扫地电极之间,因此施加了高压,从而导致高速扫描(电子从顶部到底扫向了方向)。电子在垂直方向的不同时间和略有不同的角度偏转,然后进行到MCP(微通道板)。当电子通过MCP时,它们被乘以数千次,然后在磷光屏幕上轰炸,在那里它们被转换回光。与第一个入射光脉冲相对应的荧光图像位于磷光器屏幕的顶部,其次是其他荧光脉冲,其图像以降序进行。换句话说,磷光屏幕上垂直方向的轴作为颞轴。各种荧光图像的亮度与相应入射光脉冲的强度成正比。在磷光器屏幕上的水平方向上的位置对应于水平方向的入射光位置。
背景:切除的完整性是卵巢癌患者的关键预后指标,而肿瘤靶向荧光图像引导手术 (FIGS) 的应用提高了细胞减灭术中腹膜转移的检测率。CD24 在卵巢癌中高表达,已被证明是肿瘤靶向成像的合适生物标志物。方法:研究了高级别浆液性卵巢癌 (HGSOC) 的细胞系和异质患者来源的异种移植 (PDX) 肿瘤样本中的 CD24 表达。将单克隆抗体 CD24 与 NIR 染料 Alexa Fluor 750 结合并评估最佳药理参数 (OV-90,n = 21) 后,对原位 HGSOC 转移性异种移植 (OV-90,n = 16) 进行了实时反馈的细胞减灭术。将术中 CD24 靶向荧光引导的影响与单独的白光和触诊进行了比较,并在术后监测疾病复发(OV-90,n = 12)。在四种临床注释的转移性 HGSOC 原位 PDX 模型中进一步评估了 CD24-AF750,以验证术中引导的转化潜力。结果:与原位 HGSOC 异种移植中的标准白光手术相比,CD24 靶向术中 NIR FIG 显着(47.3%)改善了肿瘤检测和切除,并减轻了术后肿瘤负担。CD24-AF750 允许识别四种 HGSOC PDX 中肉眼无法检测到的微小肿瘤病变。解读:CD24 靶向 FIG 具有转化潜力,可作为改善卵巢癌减瘤手术的辅助手段。资金:本研究由 H2020 计划 MSCA-ITN [675743]、Helse Vest RHF 和 Helse Bergen HF [911809、911852、912171、240222、911974、HV1269] 以及挪威癌症协会 [182735] 和挪威研究理事会通过其卓越中心资助计划 [223250、262652] 资助。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
图1。反射的共聚焦显微镜原理,用于测量气道上皮培养物上的ASL高度。a:激光束的示意图通过在空气液体界面上生长的差异气道上皮层,并在每个界面反射的光的一部分随着折射率反转,以反转其传播方向。为了清楚起见,反射信号与激光光分开描述。FEP:氟化乙烯丙烯。 b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。 箭头标志着从荧光强度的以下线曲线中取出的位置。 中反射光的峰FEP:氟化乙烯丙烯。b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。箭头标志着从荧光强度的以下线曲线中取出的位置。
图2。perovskite@polymer纳米纤维的形态。a)和b)L-PPNF的TEM图像。c)使用PMMA获得的纳米纤维的TEM图像,为此,没有形成明显的钙钛矿纳米晶体。d)perovskite@pvdf纳米纤维的TEM图像。PVDF纳米纤维中嵌入的巨大不规则形状的钙钛矿也有粗糙的表面。e)在紫外线照明下浸入水中的不同时间后,L-PPNF的照片。f)收集在A4纸上的L-PPNF的照片以及紫外灯照明下的相应荧光图像,显示样品均匀性。g)大规模的L-PPNF的SEM图像。
荧光光谱可用于医学和环境应用中的诊断。利用荧光发射的许多方面来提高诊断的准确性。构建了基于氮激光或染料激光激发和光学多通道检测的荧光检测系统。并记录了来自各种来源的人类恶性肿瘤的荧光光谱。使用外源性发色团以及内源性组织荧光观察肿瘤边界。特别是。发现 8-氨基乙酰丙酸可提供非常好的肿瘤边界。开发了一种能够同时记录选定波长的四个荧光图像的多色成像系统。基于四个子图像,显示了恶性肿瘤的处理图像示例。此外,还提供了人类恶性肿瘤光动力治疗的数据。发现人类动脉粥样硬化主动脉和动脉粥样硬化冠状动脉段切除物的自发荧光光谱与非病变血管的自发荧光光谱不同。此外,发现动脉粥样硬化样本的荧光衰减曲线与非病变样本的荧光衰减曲线不同。结论是,应同时利用光谱和时间信息来增强分界。讨论了获取不受血液干扰的荧光数据的方法,以及在动脉粥样硬化体内激光血管成形术中的应用。光学多通道系统和多色成像系统与最初用于环境测量的遥感系统集成,以获得距离最远 100 米的植物的荧光光谱以及荧光图像。发现受到环境压力或衰老植物的荧光数据与健康植被的荧光数据不同。
触摸神经元。CRISPR-CAS9基因编辑用于将磷酸化T231A,磷酸化模拟T231E和乙酰基模拟的K274/281Q突变引入Tain4 Orf。为简单起见,这些突变体将称为T231A,T231E和K274/281Q。(b,c)第3天的触摸神经元的荧光图像,表达dendra2 :: Taut4转化融合和T231E突变体的单拷贝转基因编码。虚拟的圆圈表示PLM细胞体的位置,显示在插图中。比例尺,0.5 µm。注意,斑点荧光来自后肠中标记为GFP的HSP-60表达式。(c,d)成年第3和第10天,对面板A中列出的菌株的PLM细胞体荧光定量。数据是来自两个独立技术重复的平均值±SD。各个数据点从单独动物的单个PLM细胞中划分值(n = 25±5)。统计分析是通过Tukey的事后测试进行的双向方差分析,在比较包围样品时,*** p <0.001。请注意,左侧条形柱是指单独携带Dendra2报告基因的转基因菌株的荧光定量,而右侧则是指携带Dendra2和HSP-60记者的菌株。(e)表达整合的UPR MT报告基因P HSP-60 :: GFP和单拷贝MOSSCI插入的转基因蠕虫的代表性荧光图像。比例尺,0.5毫米。数据是平均±SD(来自两个独立生物学重复的20只动物)。(f)从面板中列出的菌株的后肠道区域中荧光信号强度定量。ns表示不显着,如通过单向方差分析计算,然后进行Tukey的多重比较测试。
Tempus AI 开发了一种基于神经网络的模型,可将光学显微镜图像转换为虚拟荧光图像,从而无需使用细胞毒性染料。此外,该模型更引人注目的扩展比虚拟染色更进一步,可以预测药物对光学显微镜图像中存在的所有类器官的疗效,从而实现对药物反应的时间监测。该模型称为正则化条件对抗 (RCA) 网络,是生成对抗网络 (GAN) 的创新扩展,专为图像生成和生存力预测而量身定制。RCA 网络在多种癌症类型的 29,000 多对图像的多样化数据集上进行训练,可准确复制荧光信号并直接从明场图像评估药物反应。
间接免疫荧光 (IIF) 是一种重要的实验室诊断筛查方法,因为它具有高灵敏度和特异性以及广泛的抗原谱。然而,荧光模式的显微镜评估对实验室工作人员来说既耗时又具有挑战性。如今,许多实验室使用自动化系统来促进和标准化 IIF 的读数和解释。自动化显微镜系统能够快速数字采集免疫荧光图像,以及可靠的结果评估,包括区分阳性和阴性样本、关键自身抗体的模式分类和滴度指定。新的最先进系统结合了基于深度学习方法的人工智能 (AI),用于对免疫荧光模式进行分类和计算抗体滴度。实时显微镜的出现,使评估完全在屏幕上进行,为 IIF 诊断提供了新的速度和便利性,以及显微镜和