可见光光聚聚合正面临着一场革命,随着节能光源的发展,即LED。持续开发光电系统的努力在聚合速率和单体转化方面优于现有的系统,从学术角度来看,寻找尚未在光聚聚合中尚未研究的新染料的搜索仍然非常活跃。最近,萘醌 - 咪唑基和萘醌 - 噻唑衍生物已被鉴定为可在人造光源或太阳下设计的I型和II型光通剂的有趣结构。萘喹酮是生物化化合物,可以大大减少光聚合的碳足迹。萘喹酮也是用于设计光初步器的廉价前体,使其能够设计低成本的吸光结构。通过其广泛的吸收光谱,萘喹酮也是设计阳光光学剂的出色候选者。在这篇综述中,报告了这两个脚手架的不同结构,并提供了光学能力的比较。
各种兴趣点,例如可调能级,重量轻,简单处理,机械敏感性,大面积的制造和易用性,可将其用作显着的光值工具。1 - 3然而,由于大规模的某些缺点,尤其是它们昂贵的产量,低吸收特性和较差的V OC,因此OSC社区将其重点放在了perovskite材料上。3 - 5个钙钛矿太阳能电池(PSC)已成为光伏技术中最有前途的技术,表现出显着的效率,低生产成本和多功能应用潜力。6此类材料被称为与矿物钙钛矿共有的晶体结构(CATIO 3),其典型组成是一种混合有机 - 无机铅或基于锡卤化物的化合物。钙钛矿材料具有ABX 3的一般公式,其中A是A阳离子,B是金属阳离子,而X是卤化物阴离子。7蓬勃发展,Kojima等人显示了其在光伏应用中的承诺。通过使用CH 3 NH 3 PBX 3作为光吸收层的一部分,通过使用CH 3 NH 3 PBX 3获得了3.8%的功率转化效率(PCE)。8随后,突破迅速遵循,当前的PSC现在超过25%,
摘要 这项工作的创新之处在于量子计算分析的应用,具体来说,这项工作采用密度泛函理论 (DFT) 和 Hartree-Fock (HF) 技术以及各种基组 (aug-cc-pVQZ、3-21G、6-31G、6-311G 和 SDD),研究了萘的结构和特性。探索了萘结构和特性的理论性质:最高占据分子轨道 (HOMO)、最低未占据分子轨道 (LUMO)、带隙 BG、态密度 (DOS)、紫外 (UV) 和自然键轨道 (NBO)。研究了几个其他特性:标准温度和压力下的热化学性质及其光学性质(具有间接和直接跃迁的光学 BG)。本研究采用 DFT/aug-cc-pVQZ 基础,以 4.75 eV 为固定值,确定了萘的 HOMO-LUMO 间隙。我们在最近的密度泛函理论 (DFT) 研究中发现间隙分别为 4.71、4.873 和 4.74 eV,与我们的结果一致。
OITA 促进 EPA 与美国联邦认可部落之间的国家部落接触,是 EPA 与白宫美洲原住民事务委员会的主要联络处。OITA 将 6PPD-醌列为 2023 年 10 月和 2024 年 10 月全国部落行动委员会会议的主题。OITA 就 EPA 签署的部落条约权利谅解备忘录的报告向白宫美洲原住民事务委员会通报了这一努力。OITA 继续促进与美国联邦认可部落的国家部落接触和信息共享,包括与部落就他们在这方面的需求、担忧和问题进行对话。OITA 继续通过 EPA 赞助的部落伙伴关系小组(包括全国部落核心小组、全国部落毒物委员会和部落科学委员会)和其他机制,与部落合作伙伴一起提高认识。OITA 将在全国各地的各种部落会议上讨论 6PPD 的审查要点。可能需要就跨机构或工作组活动进行部落协商,而 OITA 的美国印第安人环境办公室致力于帮助评估和支持所需的 EPA 协商行动。
白血病包括一群高度异质性疾病,对人类健康构成严重威胁。仍然需要改善白血病患者的长期结局,而新的有效治疗策略仍然是未满足的临床需求。shikonin(SHK)是一种萘醌衍生物,显示多种生物学功能包括抗肿瘤,抗炎性和抗过敏作用。许多研究报道了过去30年中SHK的抗白血病活性,并且有研究表明,与实体瘤相比,SHK对各种白血病细胞特别有效。在这篇综述中,我们将讨论SHK的抗白血病效应并总结基本机制。因此,SHK可能是一种有前途的药物,可以作为抗白血病药物发展。
虽然半导体电路的小型化仍在继续,但它已不再遵循摩尔定律,摩尔定律预测每 18 个月单位面积晶体管数量将翻一番。这种小型化必须在可预见的未来达到其物理极限。克服这一障碍的一种可能途径是使用分子电子学,其中单个分子将充当电子设备的构建块,例如晶体管或存储元件。张 1 最近的一篇评论文章展示了一个活跃的研究领域。Schaub 等人 2,3 报道了一种可控开关,由沉积在 Cu-(110) 表面上的偶氮苯分子组成。如果施加大于 0.3 V 的电压,则可以产生两种对称性相关的互变异构体中的一种,具体取决于扫描隧道显微镜 (STM) 尖端的位置。较小的电压允许在不改变分子的情况下确定其当前的互变异构状态。翻译成计算语言,这构成了一个可以写入和读取的存储元件。不幸的是,STM 尖端需要移动到分子上方的正确位置,这使得操作无法以可能与当前微电子器件相媲美的频率进行。另一个问题是,电导率的变化只与表面垂直的方向有关,因为支撑金属会使任何平行于表面的电压短路。为了制造出可用于电子设备的分子,必须具备三个先决条件:双稳态、
Scholl 反应 1 是一种合成多环芳烃的有效方法,可在一步中形成多个碳 - 碳键。通过自由基阳离子机理 2 进行的 Scholl 反应对底物内电子密度的分布非常敏感,氧化芳族偶联发生在电子密度最高的位置。3 基于这一概念,我们最近证明,通过在底物中引入萘部分可以促进 Scholl 反应,从而产生高度弯曲的多环芳烃。4,5 在此,我们通过展示成功合成前所未有的芳香鞍形物(图 1 中的 1)来扩展这一策略的范围,这是通过在 Scholl 反应的底物中加入萘基来实现的。芳香鞍形物,也称为负弯曲多环芳烃,最近受到越来越多的关注 6,7,原因有两个。首先,它们代表碳黑石中的片段 8
摘要简介:早产视网膜病(ROP)是儿童失明的主要原因,主要影响新生儿和低胎龄。这是一种需要筛查和及时检测来指导治疗的疾病。当前的疗法是侵入性,昂贵且部分有效的,最近口服普萘洛尔是有效的,可以预防或治疗阈值视网膜病前病。目的:报告接受口服普萘洛尔的早产性视网膜病的极端过早诊断的临床病例,并随着病理的大量改善而发展。方法:数据将通过电子病历和纸张获得。该研究将在完成研究伦理委员会批准后,由患者的法定监护人填写免费和澄清同意书(TCL)后开始。这是对临床病例报告格式的观察类型和描述性类型的研究。结果/结论:它的科学相关性是对早产中这种常见病理的新的,侵入性较低的治疗资源的重要性和需求。关键字:早产视网膜病变;早产新生儿;普萘洛尔;健康教育;教学。
