摘要:上呼吸道感染(URTI)占学龄前儿童住院率高的儿童喘息发作的80%以上。大多数在URTI期间患有喘息症状的儿童通常是非原子的。由于urti引起的大多数喘息发作归因于病毒触发因素,因此一些研究表明白藜芦醇的潜在抗炎和抗病毒特性。本研究旨在确定白藜芦醇对乌尔蒂(Urtis)触发的复发性喘息的儿科非原子患者的影响。我们进行了一项前瞻性单盲研究,以评估纳入白藜芦醇和羧甲基β-葡聚糖的短期鼻溶液的有效性,在URTI发作时施用了7天,与标准的鼻腔液化相比,与0.9%的盐水溶液相比。共有19名患者进入了活跃组,将20名患者分配到安慰剂组。在两组中的总体喘息日(p <0.001),平均喘息天数(p <0.01)以及每名患者的喘息发作(p <0.001)显示出接收白藜芦醇的组显着降低,与安慰剂组相比,与医院的接入相比(p <0.001)(p <0.001)(p <0.001)和cortialoid cortialoid(p <0.001)。我们的发现似乎表明,在乌尔蒂(Urtis)继发的非原子儿童中,鼻腔白藜芦醇可能是从上空气道症状开始时有效预防或减少喘息的情况。
摘要:将β-葡聚糖纳入狗和猫粮与这些动物健康的许多有益影响有关。在这方面,正在努力阐明慢性患者这种营养素的潜力。由于缺乏对该主题的评论,因此本评论文章旨在编译和讨论迄今为止发现的证据。特应性皮炎,炎症性肠病和骨关节炎是狗和猫的临床显着相关性的疾病。通常,这些慢性疾病的病理生理学与免疫介导的炎症机制有关。因此,在本综述中强调了β-葡聚糖的免疫调节和抗炎作用。可用的信息似乎表明,对β-葡聚糖对狗过敏过程的影响的研究表明,特应性皮炎病例的临床体征减少了。此外,虽然β-葡聚糖表现出有望是一种安全的补充,尤其是对于骨关节炎,但进一步的临床试验势在必行,尤其是在不受控制的环境中。β-葡聚糖成为一种潜在的营养,可为炎症性肠病患者提供免疫益处,尽管需要进行广泛的研究来定义其最佳起源,分子量,剂量,剂量以及跨这种疾病的动物的特定应用。
很大一部分海藻或海洋大型藻类由多糖组成,表现出各种特性和健康益处。laminarin,也称为β-葡聚糖,是一种源自棕色藻类的储存多糖。它因其潜在的药理作用而被认可,包括抗氧化剂,抗癌,免疫调节和疫苗辅助性能。laminarin,可生物降解,生物相容性和微毒,已被广泛探索为功能材料。本章总结了拉米那林的分子特征,并促进了报告的健康益处的作用机理。当我们破译其分子复杂性和免疫调节作用时,进一步的研究有望揭示新的见解,从而增强了我们对拉米那林在不同领域的潜力的理解。
在称为受过训练的免疫的过程中,通过β-葡聚糖对先天免疫细胞进行抽象的表观遗传重编程,从而增强了宿主对继发感染的反应。β-葡聚糖是植物,藻类,真菌和细菌的结构成分,因此被人类巨噬细胞识别为非自我。我们从Alcaligenes faecalis中选择了从酿酒酵母分散的β-葡聚糖Curdlan,WGP和efternaria的富含β-葡聚糖培养的上网和β-葡聚糖的培养物和投资是否能够产生训练有素的免疫性效应,从而导致毒物较高的Mycobactium tlyberissis的对照。我们观察到了用curdlan和替代IA训练的巨噬细胞中结核分枝杆菌生长的显着性生长,这也与IL-6和IL-1β释放的增加有关。WGP可分散训练的巨噬细胞分层为“无反应者”和“反应者”,根据他们控制结核分枝杆菌的能力,“反应者”产生较高的IL-6水平。向感染的巨噬细胞培养中添加中性粒细胞进一步增强了对结核分枝杆菌的宏观控制,但在刺激中却没有
抽象背景胰腺癌(PC)是一个充满挑战的诊断,尚未受益于免疫肿瘤治疗的进步。不可逆的电穿孔(IRE)是一种非热消融的方法,用于治疗精选的局部可切除的不可切除的PC的患者,并增强了某些免疫疗法的作用。酵母衍生的颗粒β-葡聚糖会诱导训练有素的先天免疫,并成功减轻了鼠PC肿瘤负担。这项研究检验了以下假设:IRE可以增强β -Glucan在PC治疗中诱导训练的免疫力。方法β-葡萄糖训练的胰髓样细胞在暴露于消融和未灭绝的肿瘤调节培养基后的训练有素的反应和抗肿瘤功能。β -Glucan和IRE组合疗法在野生型和抹布 - / - 小鼠的原位鼠PC模型中测试。肿瘤免疫表型。与IRE结合使用以治疗PC。通过质量细胞仪评估IRE后PC服用口服β-葡聚糖患者的外周血。结果开发的肿瘤细胞引起了受过训练的训练反应,并增加了抗肿瘤功能。在体内,β-葡聚糖与IRE结合减少的局部和远处肿瘤负担延长了鼠的原位PC模型。这种组合增强了对PC肿瘤微环境的免疫细胞浸润,并增强了肿瘤浸润的髓样细胞的训练反应。这种双重疗法的抗肿瘤作用与适应性免疫反应无关。此外,口服的β-葡聚糖被确定为诱导鼠胰腺中训练有素的免疫力的替代途径,并与IRE结合使用了PC的长期生存。β -Glucan在体外治疗中还诱导了从接受治疗的PC患者获得的外周血单核细胞中受过训练的免疫力。最后,发现口服的β-葡聚糖会显着改变五名患有III期III期患者的外周血中的先天细胞景观。结论这些数据突出显示了在
在自然免疫学上发表的最新论文中,Ding等。提供了有关训练有素的先天免疫如何消除癌症的机制的新见解。作者表明,酵母衍生的整个β-葡聚糖颗粒(WGP)提高了肺间质性巨噬细胞对肿瘤来源因子的反应性,与随后通过增强的细胞毒性对癌细胞抑制肿瘤转移相关的肿瘤转移。作者确定了由WGP训练的巨噬细胞中的代谢鞘脂 - 线粒体纤维轴是负责这种现象的关键途径,并将其归类为受过训练的先天免疫力的机制[1]。传统上,先天和适应性免疫系统通过其特殊的养育和记忆能力而区分。长期以来,人们一直认为免疫记忆是适应性免疫反应的独家标志。另一方面,先天免疫细胞没有被视为可以保留记忆表型的细胞。近年来,这种范式发生了变化:新兴的证据表明,某些微生物刺激和内源性配体会诱导先天免疫细胞功能持久的变化,从而在继发性刺激时会增加其反应性。此过程被称为“训练有素的先天免疫”或“受过训练的免疫力” [2]。在与受过训练的免疫刺激的第一次接触后,易感细胞会经历代谢,表观遗传和/或转纹理重编程,从而提高对继发性侮辱的反应性[3,4]。训练有素的先天免疫主要在单核细胞和巨噬细胞中进行了描述[3],后来在粒细胞中[5]。这些先天的免疫细胞具有识别和应对广泛刺激曲目的能力;然而,大多数对训练有素的先天免疫力的研究都集中在巴奇氏菌(BCG)疫苗(BCG)疫苗,牛肉分枝杆菌的弱版和真菌β-来自念珠菌,Trametes versicolor或saccharomyces cerevisiae的真菌β-葡萄糖。在治疗感染性和炎症性疾病的治疗方面已经探讨了训练有素的先天免疫力,而促使训练有素的免疫作为癌症的治疗策略,直到最近才出现。例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。 尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制
摘要:姜黄素因其多种健康益处而闻名,这主要归功于其抗氧化和抗炎特性。它已被广泛研究作为治疗剂,然而,由于其水溶性和生物利用度较差,因此临床效果不佳。尽管将这种化合物封装在聚合物颗粒中被认为是提高其治疗价值最有前途的策略之一,但由于缺乏对其对免疫系统可能产生的不利影响的评估,这些纳米颗粒未能达到预期效果。因此,在这项工作中,我们报告了一种将姜黄素封装到葡聚糖纳米颗粒中的新方法,并评估了它们对免疫系统细胞的影响。生产了两种不同大小的姜黄素负载葡聚糖纳米颗粒(GluCur 100 和 GluCur 380),每种的封装效率都接近 100%,并对其尺寸分布、表面特性和形态进行了表征。结果表明,在人类 PBMCs 和 RAW 264.7 细胞中测试的最小粒子 (100 nm) 具有最大的溶血作用和细胞毒性。尽管 GluCur 380 NPs 显示出较弱的 ROS 生成,但它们能够抑制巨噬细胞产生 NO。此外,我们发现凝血时间不受大小粒子以及血小板功能的影响。此外,两种纳米粒子均诱导淋巴细胞增殖和 Mo-DC 分泌 TNF- α。总之,本报告强调了免疫毒性评估的重要性以及它如何依赖于纳米材料的固有特性,希望有助于提高纳米药物的安全性。
摘要 — 微小扇头蜱(Boophilus)蜱是牛的专性吸血性外寄生虫,是致病微生物的载体。传统的蜱虫控制基于化学杀螨剂的应用;然而,不加控制地使用它们会增加抗性蜱虫种群,以及食品和环境污染。替代免疫蜱虫控制已被证明是部分有效的。因此,需要鉴定新抗原以提高免疫保护。这项工作的目的是评估 Cys 环受体作为疫苗候选物的效果。在大肠杆菌中重组产生谷氨酸受体和甘氨酸样受体的 N 端结构域。用弗氏佐剂乳化的四剂重组蛋白分别对 BALB/c 小鼠组进行免疫。经蛋白质印迹分析证明,两种候选疫苗在小鼠中均具有免疫原性。接下来,用佐剂 Montanide ISA 50 V2 单独配制重组蛋白,并在感染微小扇头蜱幼虫的牛身上进行评估。用每种佐剂蛋白的三剂对三组欧洲杂交小牛进行免疫。使用 ELISA 测试评估针对重组蛋白引起的 IgG 免疫反应。结果表明,候选疫苗在接种疫苗的牛身上产生了中等体液反应。疫苗接种显著影响了成年雌性蜱的吸血数量,但对蜱的重量、卵重和卵的受精率没有显著影响。谷氨酸受体和甘氨酸样受体的疫苗效力分别为 33% 和 25%。
背景:目前,放射治疗是临床治疗癌症最受欢迎的方法之一。虽然它提供了一种极好的选择性杀死癌细胞的方法,但它也会带来许多副作用。为了尽量减少这些副作用,并最大限度地提高治疗效果,我们建议使用靶向放射性药物。在本文介绍的研究中,我们研究了两种基于葡聚糖的放射性载体的合成途径,并提供了它们的关键化学和物理特性:螯合剂的键合稳定性和所得制剂的三级结构及其对生物特性的影响。此外,使用 DELFIA 荧光测定法连接和定量 PSMA 小分子抑制剂。最后,使用共聚焦显微镜和 ITLC-SG 色谱法研究了生物特性和放射性标记产量。结果:成功生成了两种类型的 Dex 结合物——胶束状纳米颗粒 (NP) 和非折叠结合物,并显示出细胞效应。发现结合物的三级结构会影响 PSMA 的选择性并介导细胞结合以及细胞摄取机制。研究表明,NPs 被其他非 PSMA 介导的通道内化。同时,非折叠结合物的摄取需要 PSMA 抑制剂穿过细胞膜。NHS 偶联 DOTA 螯合剂的放射化学产率在 91.3% 至 97.7% 之间,而 TCT-胺键合表现出更高的稳定性,产率为 99.8% - 100%。结论:我们获得了新型的葡聚糖基放射性结合物,并提出了一种优越的螯合剂结合方法,从而实现了精湛的放射化学性质以及选择性跨膜转运。