14.00 - 15.30增强气候富含气候葡萄栽培的葡萄藤育种:利用遗传资源和预测基因组学(Emanuele de Paoli教授 - Udine大学)
非正式交流葡萄是葡萄生长的植物或爬行者。葡萄藤可以在其卷须的支撑下向任何方向发光或移动。在某种程度上,非正式沟通可以在非正式群体的支持下向任何方向移动。它是如何生成的?1)人们需要分享并同意重要的意见和态度,以感觉自己属于一组2)人们需要与上级分享自己的希望和野心3)人们需要表达喜悦,愤怒,敌意等情绪。4)由于正式,结构的刚度,人们感到有必要绕过“官方渠道”,以便为了获得和提供有关工作绩效的信息。各种类型的葡萄藤是:1)链2)单链链3)八卦链4)概率链5)群集链6)旋转7)恒星
欧洲绿色协议旨在减少农药的使用,特别是开发生物防治产品以保护农作物免受疾病的影响。的确,使用显着量的化学物质对环境产生负面影响,例如土壤微生物生物多样性或地下水质量以及人类健康。葡萄藤(Vitis Vinifera)被选为第一个目标作物之一,因为其经济重要性及其对杀菌剂的依赖,以控制全球主要的破坏性疾病:灰色霉菌,柔软和白粉病。壳聚糖是一种从甲壳类外骨骼中提取的生物聚合物,在包括葡萄藤在内的许多植物物种中已被用作生物防治剂,以针对多种隐脂性疾病,例如唐尼霉菌(plasmopara viticola),粉状降落(elysiphe necator)和灰色霉菌(bilyea)和灰色霉菌(Brighodis)(byeaea)。但是,其作用方式的确切分子机制尚不清楚:它是直接的生物农药效应还是间接启发活性,还是两者兼而有之?在这项研究中,我们研究了六个具有不同程度的聚合(DP)(DP)的壳聚糖,范围从低到高DP(12、25、33、44、100和470)。我们通过评估其抗真菌特性及其诱导葡萄藤免疫反应的能力来仔细检查其生物学活性。为了研究其启发性活性,我们分析了它们诱导MAPK磷酸化的能力,防御基因的激活和葡萄藤中代谢物变化的能力。我们的结果表明,DP较低的壳聚糖在诱导葡萄的防御能力方面更有效,并且具有针对灰果芽孢杆菌和viticola的最强生物农药作用。我们用DP12将壳聚糖识别为最有效的抗性诱导剂。然后,在过去三年中进行的葡萄园试验中,壳聚糖DP12已针对柔软和白粉病进行了测试。获得的结果表明,当病原体接种量很低时,基于壳聚糖的生物防治产物可能会有效地有效,并且只能与两个
葡萄卷叶病和红斑病的主要缓解措施包括采购经过病毒筛选的植物材料、移除单个患病葡萄藤(除根)或重新开发高发病区以及减少病媒种群。成功的除根需要准确识别患病葡萄藤,当症状令人困惑、不同步或缺失时,这可能具有挑战性。该项目正在使用人工智能和“内部” LAMP-GRBV 检测来提高视觉评估的准确性。Virus Vision 应用程序的试点版本在识别患病区方面准确率超过 87%。该应用程序的更新版本将在 2023 年秋季发布并测试,其数据库中包含更多照片。了解更多信息,请访问 bit.ly/ucce-red-blotch 。
从无DNA编辑的葡萄藤原生质体中的植物再生Simone scintilla 1*,Umberto salvagnin 1,Lisa Giacomelli 2,Tieme Zeilmaker 2,Mickael A. Mickael A. Malnoy A. Malnoy 1,Jeroen Rouppe Van der Voort 2,Claudio Moser 1。1果实作物,研究与创新中心的基因组学和生物学系,E. Mach 1,I-38010,San Michele A/Adige(TN)意大利; 2 Enza Zaden,Haling 1-E,1602 dB,Enkhuizen,荷兰。*通讯作者:Simone Scintilla博士(Simone.scintilla@unitn.it)。抽象的CRISPR-CAS技术已广泛扩展了植物育种中基因组编辑的应用领域,从而使遗传库中可能的特定和最小突变。关于标准基因组编辑技术,可以以核糖核蛋白(RNP)的形式引入CRISPR-CAS机械,从而避免将外源性DNA引入细胞中。对将无DNA递送到植物细胞中应用中的兴趣不断增加,尤其是在有价值的木本植物精英品种的情况下,CRISPR-CAS9技术将保留其基因型,同时仍导致靶向遗传修饰。通过确保CRISPR-CAS DNA-RNP作为RNP的无效递送,并且由于单个编辑的单元将不存在嵌合体,因此,使用CRISPR-CAS DNA-无需递送,非常适合新育种技术的需求。然而,通常通过低编辑效率和不成功的再生过程来阻碍木质植物中原生质体的细胞培养。深红色的L.胚胎愈伤组织。此策略符合无DNA策略要求。我们在这里描述了一种成功的无DNA方法,以获得完全编辑的葡萄植物,该方法是从V. vinifera cv获得的原生质体中再生的。在浓霉敏感性基因VVDMR6-2上编辑了转染的原生质体。再生的编辑植物表现出1bp或2bp的纯合缺失,以及1BP的纯合插入。引言基因组编辑技术允许以高度精确度修改细胞DNA。尤其是随着CRISPR-CAS9的出现(群集定期间隔短的短质重复 - CAS9)技术,基因组编辑的应用领域已被广泛扩展。该系统基于通过互补的RNA序列和CAS核酸酶介导的DNA双链破裂对DNA编辑位点的识别,这使得插入,缺失,甚至仅仅使一个核苷酸的修饰成为可能。因此,尤其是在木质植物遗传改善的情况下(例如葡萄藤或苹果)精英品种,CRISPR-CAS9技术可确保其基因型保存,同时导致靶向遗传修饰。CRISPR-CAS成分可以以核酸的形式引入细胞内(即DNA/mRNA编码整个系统),或以核糖核蛋白(RNP)复合物的形式进行编码。虽然DNA可以整合到基因组中,而mRNA受其内在不稳定性的影响,但RNP的直接细胞递送打开了有吸引力的场景,因为它有可能体现出强大的方法论,导致特定而最小的突变,而没有外源性DNA的痕迹(Woo等,2015)。从这种角度来看,与经典的转基因生物相比,对植物的应用兴趣可能会更好地接受消费者(Saleh等,2021)。到目前为止,已经提出了三种主要策略将CRISPR-CAS系统输送到植物细胞中。1)使用工程化的农杆菌,可以轻松克服植物细胞壁。然而,该策略采用外源质粒DNA,这些DNA含有农杆菌的DNA部分,在转化后,该策略在细胞DNA中积分为细胞DNA。对于木本植物,外源性DNA只能通过杂交去除,从而导致遗传背景的变化。成功地应用于包括木本植物在内的许多农作物的替代方法,包括T-DNA的分子切除(Dalla Costa等,2020),几乎完全去除外源性DNA。但是,剩余的最小残留外国DNA可能与许多国家的当前严格转基因生物法规不相容。2)粒子轰击使用装有生物材料的纳米颗粒子弹来射击植物组织,从而超过了细胞壁垒,并释放了纳米颗粒装载的生物货物以诱导基因组编辑。尽管如此,各种物理参数严重影响了这种方法的效率。,并非所有细胞都会被子弹击中,因此下游再生过程可能会引起嵌合植物。3)替代解决方案是暂时清除细胞壁,有效地将生物材料递送到单个细胞中。根据此策略,细胞壁是酶法消化的,因此提供了一个“裸”植物细胞(即原生质体)由质膜界定。在有利的条件下,可以通过PEG浸润,电穿孔或LiPofection轻松实现RNP的细胞递送。2-3天后,恢复了细胞壁,进一步的细胞划分
摘要。地中海盆地被气候变化视为世界上受影响最大的地区之一。传统上,该地区的葡萄栽培一直在应对高温,热浪和干旱。由于未来预测的气候变化,预计会加剧植物上严重的非生物压力的如此特别的极端条件。圣托里尼岛似乎并不是例外。与水的可用性低相结合,温度和太阳辐射的升高使得有必要开发和应用方法,以应对葡萄藤的非生物应力。这项研究检查了叶面的应用及其对葡萄的质量和定量特征的影响,通过喷洒Santorini葡萄园(Greece),Assyrtiko和Mavrotragano的两个土著品种的应用。实验发生在2019 - 2020年耕种季节。具体而言,评估了高岭土和碳酸钙的处理,评估了两种能够反映辐射的惰性材料。在Assyrtiko的情况下,考林和碳酸钙的影响在两个不同的训练系统,即Santorini“ Kouloura”的传统培训系统以及单个Guyot培训系统上进行了检查。在Mavrotragano的情况下,考林和碳酸钙的作用在葡萄藤上检查了在双重Guyot训练系统中接受训练的葡萄藤。对葡萄和浆果进行了机械分析,并在技术成熟阶段对必须的特征进行了测量。在皮肤和种子中确定酚类化合物的含量,并使用分光光度计使用不同方法,使用不同的方法(FRAP和DPPH)测量样品的抗氧化能力。同时,对高压液相色谱法(HPLC)的分析表明,必须在必不可少的单个糖和酸中浓度以及皮肤单个花色苷的测量值为CV Mavrotragano。治疗结果表明,与葡萄和浆果的重量,长度和宽度相关的分析以及pH的测量以及两个训练系统的总滴定酸度以及两个品种似乎都没有影响。同样,与对照处理中的葡萄相比,喷雾样品的大多数酚类化合物和花青素的水平主要增加,因此,这会导致质量更好的葡萄,因此葡萄酒质量更好,因为当前实验中的大多数测量值也与葡萄酒的有机物质直接相关。因此,通过叶面应用使用高岭土和碳酸钙构成了适应葡萄藤的重要手段,葡萄藤在干旱条件下,在经济和环境可持续性的原因方面生长,同时提高葡萄的质量。
葡萄藤构成了构成其微生物组的各种微生物。酿酒师已经使用了居住在葡萄树的微生物数百年来,尽管现代葡萄酒生产商经常依靠接种的微生物,例如酿酒酵母。在澳大利亚葡萄酒行业中,有一种恢复使用微生物组进行葡萄酒发酵的运动。随着对葡萄藤微生物组在葡萄疾病,发酵和随后的葡萄酒感官特征方面的作用的了解的提高,微生物世界提供了一种新的复杂程度,可用于酿酒。为了开发和维护所需的葡萄园微生物多样性,需要进行广泛的微生物监测。在这里,我们讨论了可活力选择染料的利用,以区分生物和与宿主相关的微生物以及非生存来源产生的遗物信号。
含义,自然和范围 - 有效口头交流的原则 - 有效语音的技术 - 口头交流的媒体(面对面 - 面向 - 脸对话 - 电视会议 - 新闻发布会 - 示范 - 无线电记录 - 录音 - 录音 - 录音 - 谣言 - 谣言 - 示威与戏剧化 - 戏剧性 - 戏剧性 - 公共地址系统 - 公共地址系统 - 葡萄藤讨论 - 小组讨论 - 口头报告 - 口头电视电视)。聆听的艺术 - 良好聆听的原则。
通过咨询国际科学文献或数据库内容知识知识额额教学来控制病毒和病毒的可能性:•介绍课程和学习验证方法•定义病毒,物种和病毒式准植物。Viroid的定义•动物和植物病毒之间的独特特征•病毒颗粒的结构。病毒结构•植物病毒和病毒的分类法和命名法的原理•病毒和病毒的组织和表达基因组•植物病毒和病毒的传播方法•基于核酸的特征,使用血清学方法的诊断和鉴定病毒和鉴定病毒和病毒。•控制病毒和病毒诱导的疾病,与地方性,新兴和隔离实体有关。•关于控制病毒和病毒诱导的疾病的转基因,结冒发生和基因组编辑的注释•番茄,马铃薯,瓜酸酯,葡萄藤,葡萄藤,柑橘,柑橘,石灰石的病毒和病毒的主要疾病。教室演示:•传播电子显微镜•植物病毒的传播,维持和纯化•血清学鉴定•分子杂交,终点PCR,实时PCR,实时PCR,NGS测序•从病毒感染到毕业生尖端培养,热疗和冷冻疗法的卫生感。文本和读数•讲座的注释
摘要:由卵质病原体葡萄球菌引起的柔软霉菌是葡萄藤的毁灭性疾病。viticola分泌一系列RXLR效应子,以增强毒力。这些效应子之一PVRXLR131据报道与葡萄(Vitis Vinifera)BRI1激酶抑制剂(VVBKI1)相互作用。BKI1在尼古蒂亚纳·本塔米亚娜和拟南芥中保存。但是,VVBKI1在植物免疫中的作用尚不清楚。在这里,我们发现VVBKI1在葡萄藤和本塞米亚氏菌中的瞬时表达分别提高了对葡萄球菌和phytophthora capsici的耐药性。此外,VVBKI1在拟南芥中的异位表达可以增加其对由透明质球拟南芥引起的降低霉菌的抵抗力。进一步的实验表明,VVBKI1与细胞质抗坏血酸过氧化物酶VVAPX1(一种ROS扫除蛋白)相互作用。VVAPX1在葡萄和本塔米亚乳杆菌中的瞬时表达促进了其对葡萄球菌的耐药性和辣椒菌。此外,VVAPX1转基因拟南芥对拟南芥的抗性更具耐药性。此外,VVBKI1和VVAPX1转基因拟南芥均显示出抗坏血酸过氧化物酶活性的升高和疾病的增强。总而言之,我们的发现表明APX活性与对Oomycetes的抗性之间存在正相关,并且该调节网络在V. Vinifera,N。Benthamiana和A. thaliana中得到了保存。