摘要:将点云分离为地面点和非地面点是处理用于各种应用的机载激光扫描 (ALS) 数据的重要步骤。基于插值的滤波算法通常用于滤波 ALS 点云数据。然而,大多数传统的基于插值的算法在保留突变地形特征方面表现出缺点,导致这些区域的算法精度较差。为了克服这一缺点,本文提出了一种改进的自适应表面插值滤波器,该滤波器具有多级层次结构,使用布料模拟和地形起伏幅度。该方法使用三个层次的临时数字高程模型 (DEM) 栅格表面和薄板样条 (TPS) 插值,基于自适应残差阈值将地面点与未分类点分离。采用布料模拟算法生成足够有效的初始地面种子,以构建高质量的地形表面。根据被检查区域的起伏幅度自适应地构建残差阈值,以在分类过程中捕捉复杂的景观特征。使用来自国际摄影测量与遥感学会 (ISPRS) 委员会的 15 个样本来评估所提算法的性能。实验结果表明,所提方法在平坦区域和陡峭区域都能产生令人满意的结果。与其他方法相比,该方法在滤波结果方面表现出优异的性能,遗漏错误率最低;特别是,所提方法保留了陡坡和阶地等不连续的地形特征。
12. 结论 ................................................................................................................................................................ 83 12.1. 进一步阅读 .......................................................................................................................................................... 83 词汇表 ...................................................................................................................................................................... 84 参考文献 ...................................................................................................................................................................... 86 目录 ......................................................................................................................................................................................... i 插图列表 ......................................................................................................................................................................... vi 表格列表 ......................................................................................................................................................................... vi 缩写和符号列表 ......................................................................................................................................................................... vii 1. 范围 ............................................................................................................................................................................. 1 2. 参考文件 ............................................................................................................................................................. 1 2.1. 国际海事组织 ............................................................................................................................................. 1 2.2. 美国航运局 ............................................................................................................................................. 1 2.3.挪威船级社 ................................................................................................................................................................ 2 3. 概述 ................................................................................................................................................................................. 2 3.1. 概述 ................................................................................................................................................................................ 2目的...................................................................................................................................................................... 2 3.2.历史视角...................................................................................................................................................... 2 3.3。设计考虑因素........................................................................................................................................................... 2 3.3.1. 疲劳/断裂 ................................................................................................................................................ 2 3.3.2. 腐蚀 .............................................................................................................................................................. 2 3.4. 设计手册组织 ................................................................................................................................................ 3 4. 铝和铝合金 ...................................................................................................................................................... 4 4.1. 铝特性和注意事项 ...................................................................................................................................... 4 4.1.1. 氢损伤 ...................................................................................................................................................... 4 4.2. 合金元素 ...................................................................................................................................................... 4 4.2.1. 铬 (Cr) ...................................................................................................................................................... 4 4.2.2. 铜 (Cu) ...................................................................................................................................................... 5 4.2.3. 镁 (Mg) ...................................................................................................................................................... 5 4.2.4.铜和镁 ................................................................................................................................................ 5 4.2.5. 锰 (Mn) ................................................................................................................................................ 5 4.2.6. 钪 (Sc) ................................................................................................................................................ 5 4.2.7. 硅 (Si) ................................................................................................................................................ 5 4.2.8. 银 (Ag) ................................................................................................................................................ 6 4.2.9. 锡 (Sn) ................................................................................................................................................ 6 4.2.10. 钛 (Ti) ................................................................................................................................................................................... 6 4.2.11. 锌(Zn) ...................................................................................................................................................... 6 4.2.12. 锆(Zr) ...................................................................................................................................................... 6 4.2.13. 合金元素总结 ............................................................................................................................................. 9 4.3. 合金比较 ...................................................................................................................................................... 9 4.3.1. 合金和状态名称 ...................................................................................................................................... 9 4.3.1.1. 锻造合金名称系统 ............................................................................................................................. 9 4.3.1.2. 铸造合金名称系统 ............................................................................................................................. 11 4.3.1.3. 状态名称系统 ............................................................................................................................. 12 5. 零件制造工艺 ............................................................................................................................................. 14 5.1. 5.1.1. 轧制工艺 ................................................................................................................................................................ 14 5.1.2. 板材产品 .............................................................................................................................................................. 14 5.1.3. 薄板产品 ............................................................................................................................................................ 14 5.1.4. 特种扁平材产品 ................................................................................................................................................ 14 5.1.5. 限制/注意事项 ............................................................................................................................................. 14 5.2. 铸造 ...................................................................................................................................................................... 14 5.2.1. 铸造工艺 ............................................................................................................................................................. 15 5.2.1.1. 金属模铸造................................................................................................................................ 15 5.2.1.2. 压铸 ................................................................................................................................................ 15 5.2.1.3. 砂型铸造 ................................................................................................................................................ 15
近年来,纳米级技术已成为材料科学和药物开发的最后边界[1]。纳米结构的碳质材料[2,3]在此中发挥了主要作用,例如碳纳米管和石墨烯(GF),因为它们的内在特性和易于功能化[4]。如今,石墨烯和相关材料代表了高性能碳材料中最先进的边界[5],欧盟研究委员会实施了强大的行动,名为EU石墨烯旗舰[6]。该计划旨在促进对石墨烯及其相关衍生物的基本调查,以确立欧洲社区的领域领导者[5]。这是这种同素异形的一原子厚的平面碳的最高特性,这些平面薄板紧紧地堆积在六边形细胞结构中[7]。石墨烯及其相关材料的特征可以在广泛的应用中被利用,以改善塑料[11,12]和金属[13,14]的机械鲁棒性和电子性能[8-10],即使以非常有限的量,其价格也不可忽略地忽略了其对尊重浓度的市场,因此它的价格也不可忽略。由于其高成本,石墨烯和相关材料不能用于廉价的大规模生产。但是,它们可以用于高核成本应用中,例如Frontier Medicine [24]。这个领域已被恶性疾病和对人类健康的越来越关注所增强。制药公司和学术机构已深深地致力于开车前往新设计的药物和程序的未达到的水平[25,26]。探索了大量可用的协议,新的途径[27,28],以开发用于药物输送的新的和创新的材料[29],再生医学[30],theragnognotakentic治疗[31]和组织修复[32]。
本文首次全面介绍了深度学习 (DL) 在增材制造 (AM) 中的应用。它解决了对这个快速增长但分散的领域进行彻底分析的需要,旨在汇集现有知识并促进进一步发展。我们的研究问题涵盖 AM 的三个主要领域:(i) AM 设计,(ii) AM 建模,以及 (iii) AM 中的监控和控制。我们采用循序渐进的方法,遵循系统评价和荟萃分析的首选报告项目 (PRISMA) 指南,从 Scopus 和 Web of Science 数据库中选择与我们的研究问题一致的论文。我们仅包括在七个主要 AM 类别中实施 DL 的论文——粘合剂喷射、定向能量沉积、材料挤出、材料喷射、粉末床熔合、薄板层压和大桶光聚合。我们的分析揭示了使用深度生成模型(例如生成对抗网络)进行 AM 生成设计的趋势。它还强调了将过程物理学纳入 DL 模型以改进 AM 过程建模和减少数据要求的不断努力。此外,人们对使用 3D 点云数据进行 AM 过程监控的兴趣日益浓厚,除了传统的 1D 和 2D 格式。最后,本文总结了当前的挑战,并推荐了该领域一些有希望的进一步研究机会,特别关注(i)将 DL 模型推广到各种几何类型,(ii)管理 AM 数据和 DL 模型中的不确定性,(iii)通过结合深度生成模型克服有限、不平衡和嘈杂的 AM 数据问题,以及(iv)揭示可解释 DL 用于 AM 的潜力。
摘要:短期电子设备的不断增长固有地导致大量有问题的废物,这构成了环境污染的风险,危害人类健康并引起社会经济问题。因此,为了减轻这些负面影响,我们的普遍兴趣是将传统材料(聚合物和金属)替换为电子设备中的传统材料(聚合物和金属),并在可能的情况下,同时考虑了功能,制造性和成本的各个方面。在这项研究中,我们探索了可生物降解的生物塑料的使用,例如聚乳酸(PLA),与多羟基丁酸(PHB)(PHB)(PHB)以及与Pyrolyzed的木质素(PL)以及多壁处理的碳nan型(My naneS)(梅尔氏含量)相结合。电子组件,包括等离子体处理,浸入涂料,喷墨和丝网印刷,以及热混合,挤出和成型。我们表明,经过短暂的氩等离子处理,对热泡PLA-PHB混合纤维的表面进行了短暂的表面处理后,单壁碳纳米管(SWCNTS)的渗透网络(SWCNT)可以通过浸水层沉积至1kΩ /□的薄板电阻,以制造能涂层的电极,以制造能力触摸触摸传感器的电极。我们还证明,作为浮光电介质底物的生物塑料膜适用于通过喷墨和屏幕印刷的手段来沉积SWCNT和AG(分别为1kΩ /□和1Ω /□)的导电微图案(分别为1kΩ /□和1Ω /□),并具有潜在电路板的应用。关键字:生物塑料,复合材料,混合物,热解木质素,电气设备,电极,触摸屏,EMI屏蔽■简介此外,我们以PL和MWCNT为PLA的复合和成型的复合材料是电磁干扰屏蔽材料的优秀候选物,其k频段无线电频率(18.0 - 26.5 GHz)分别屏蔽了高达40和46 db的效果。
近年来,与压力相关的疾病估计会影响日本超过400万人,并且可穿戴的传感器技术可量化日常生活中的压力。为了实现不可察觉的传感器,该研究领域已经开发了薄膜,可拉伸的透明导体,可以通过使用生物保护导体材料无线测量与医疗材料的低噪声潜在信号(约0.1 UV)。关键材料之一,一种生物干电电极,由弹性体和导电聚合物组成,该聚合物在材料中形成纳米至微米大小的相位分离结构。此外,通过使用由Ag/Au核心壳纳米线组成的inor-Ganic(金属)材料,它们是肉眼看不见的,作为接线材料,我们已经构建了高度导电和透明的可拉伸接线。由生物干燥电极和可拉伸的接线层组成的透明传感器板,它可以表达高电导率的高电导率,这使其成为与医疗材料相当的低噪声潜在测量的重要探针(图1)。我们还开发了一种新技术,用于上述金属和有机纳米材料的低损伤多层模式,并开发了“薄膜,柔性和透明的电化学晶体管”(图2)。另一方面,我们仅使用一个简单的传感器纸进行了现场测量水溶液浓度(图3)。通过重点关注从液体溶剂本身及其局部吸收的宽带红外辐射,从而实现了无样和无标记的液体质量测量。这种液体质量测量使用我们的研究小组新开发的高度敏感,宽带和可拉伸的薄膜光学传感器表。可以将薄板连接到诸如植物,氯化乙烯基管,蛇形管和橡胶管等软材料上,并且可以稳定遵循由液体流量引起的液体流量的膨胀,收缩,弯曲,弯曲,弯曲和其他变形。这项研究的结果证明了一种有助于无处不在的质量测试的基本技术,预计将来会为基础设施和农业的安全网的建设做出贡献。
orcid ID:https://orcid.org/0000-0002-3745-8133出版物:[1] Ross N.L.和Meagher E.P.(1984)在模拟压缩下H 6 Si 2 O 7的分子轨道研究。美国矿物学家69:1145-1149。[2] Ross N.L。和McMillan P.(1984)MGSIO 3 Ilmenite的拉曼光谱。美国矿物学家69:719-721。[3] Akaogi M.,Ross N.L.,McMillan P.和Navrotsky A.(1984)Mg 2 SIO 4多晶型物(橄榄石,改性尖晶石和尖晶石) - 氧化物熔体溶液量热法,相位关系和晶格振动模型的热力学特性。美国矿物学家69:499-512。[4] Ross N.L., Akaogi M., Navrotsky A., Susaki J., and McMillan P. (1986) Phase transitions among the CaGeO 3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation.地球物理研究杂志91:4685-4696。[5] McKelvey M.J.,O'Bannon G.W.,Larson E.M.,Marzke R.F.,Eckert J.和Ross N.L.(1986)新离子插入化合物(NH 4 +)的合成,表征和性能0.22 Tis 2 0.22-。材料研究公告21:1323-1333。[6] McMillan P.F.和Ross N.L.(1987)Al 2 O 3圆锥和MGSIO 3 Ilmenite的热容量计算。矿物质的物理和化学14:225-234。[7] Ross N.L. 和Navrotsky A. (1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。 矿物质的物理和化学14:473-481。 美国矿物学家72:984-994。[7] Ross N.L.和Navrotsky A.(1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。矿物质的物理和化学14:473-481。美国矿物学家72:984-994。[8] Geisinger K.L.,Ross N.L.,McMillan P.和Navrotsky A.(1987)K 2 Si 4 O 9:玻璃,薄板和韦迪特型相的能量和振动光谱。[9] Hazen R.M.,Finger L.W.,Angel R.J.,PreWitt C.T.,Ross N.L.,Mao H.K.,Hadidiacos C.G.,Hor P.H.,Meng R.L.和Chu C.W.(1987)y-ba-cu-o超导体中相的晶体学描述。物理评论B35:7238-7241。[10] Hazen R.M.,PreWitt C.T.,Angel R.J.,Ross N.L.,Finger L.W.,Hadidiacos C.G.,Veblen D.R.,Heaney P.J.,Horp.j.,Hor P.H.,Meng R.L.,Sun Y.Y.,Wang Y.Q.
1. M. Magri 和 D. Riccobelli。初始应力固体的建模:不可压缩极限下的能量密度结构。SIAM 应用数学杂志,84(6):2342–2364,2024 年 2. D. Riccobelli、P. Ciarletta、G. Vitale、C. Maurini 和 L. Truskinovsky。脆性断裂背后的弹性不稳定性。物理评论快报,132:248202,2024 年 3. NA Barnafi、F. Regazzoni 和 D. Riccobelli。弹性体中松弛配置的重建:心脏建模的数学公式和数值方法。应用力学和工程中的计算机方法,423:116845,2024 4. D. Riccobelli、HH Al-Terke、P. Laaksonen、P. Metrangolo、A. Paananen、RHA Ras、P. Ciarletta 和 D. Vella。扁平和起皱的封装液滴:重力和蒸发引起的形状变形。物理评论快报,130(21):218202,2023 5. Y. Su、D. Riccobelli、Y. Chen、W. Chen 和 P. Ciarletta。电活性介电弹性体气球的可调变形。英国皇家学会学报 A,479(2276):20230358,2023 6. P. Ciarletta、G. Pozzi 和 D. Riccobelli。具有初始应力的弹性板的 F¨oppl–von K´arm´an 方程。英国皇家学会开放科学,9(5):220421,2022 7. D. Andrini、V. Balbi、G. Bevilacqua、G. Lucci、G. Pozzi 和 D. Riccobelli。轴突皮质收缩性的数学建模。脑多物理,3:100060,2022 8. D. Riccobelli。主动弹性驱动受损轴突中周期性串珠的形成。物理评论 E,104(2):024417,2021 9. D. Riccobelli、G. Noselli 和 A. DeSimone。围绕刚性约束盘绕的杆:螺旋和变位。皇家学会学报 A,477(2246):20200817,2021 10. D. Riccobelli 和 G. Bevilacqua。表面张力控制脑器官中脑回形成的开始。固体力学和物理学杂志,134:103745,2020 11. D. Riccobelli、G. Noselli、M. Arroyo 和 A. DeSimone。互锁和可滑动杆的轴对称薄板力学。固体力学和物理学杂志,141:103969,2020 12. D. Riccobelli 和 D. Ambrosi。肌肉的激活作为应力-应变曲线的映射。极端力学快报,28:37–42,2019 13. D. Riccobelli、A. Agosti 和 P. Ciarletta。论初始应力材料的弹性极小值的存在。皇家学会哲学学报 A,377(2144):20180074,2019 14. G. Giantesio、A. Musesti 和 D. Riccobelli。横向各向同性超弹性材料中主动应变和主动应力的比较。弹性杂志,137(1):63–82,2019 15. D. Riccobelli 和 P. Ciarletta。具有残余应力的软不可压缩球体的形状转变。固体数学和力学,23(12):1507–1524,2018 16. D. Riccobelli 和 P. Ciarletta。曲折肿瘤血管的形态弹性模型。国际非线性力学杂志,107:1–9,2018 17. D. Riccobelli 和 P. Ciarletta。软弹性层中的瑞利-泰勒不稳定性。皇家学会哲学学报 A,375(2093):20160421,2017 18. D. Ambrosi、S. Pezzuto、D. Riccobelli、T. Stylianopoulos 和 P. Ciarletta。实体肿瘤是多孔弹性固体,在生长过程中具有化学机械反馈作用。弹性杂志,129(1-2):107–124,2017
购买范围`270-280目标`340-350建议购买重点O HBL Power Systems Ltd(HBL)专门从事电池的设计,开发和制造以及针对关键用户领域的挑战应用程序的设计,开发和制造,例如电信,UPS,UPS,UPS,UPS,UPS,Railways,Power,Power,Power,Power,Oil&Gas,Inture Industries和Defence等。HBL自1986年以来由A. J. Prasad先生促进,其产品在+30个国家 /地区销售。HBL在海得拉巴设有总部,位于Telangana和Andhra Pradesh的五个集成制造设施。o电池垂直是该公司的主要收入贡献者,占23财年的74%(Q1FY24占69.4%),随后在23财年为13.4%(Q1FY24 q1fy24 at 〜7%)和电子段为〜10%(q1fy24 at 〜7%),为〜10%(q1fy23 at q1fy24 at 17%)。订购书,截至2023年6月30日,``161亿v/s`年'59.4亿年。电池和电子设备的出口份额在23财年(20%,占总收入的20%)约为15%,电池的出口份额约为15%,在23财年的总收入为约15%(19.2%,总收入为19.2%),整体上的Exports的总收入为98%(FY22为94%)。HBL向以色列和阿联酋出口导弹电池。 o世界第二大制造商的镍卡德蒙(Ni-CD)电池,带有口袋板,烧结板和纤维板技术。 HBL从IGGL(Indradhanush Gas Gas Grid Limited)的Ni-CD电池订购了东北的管道项目,该项目正在执行。 此外,它成功将铅酸电池的需求转换为多个电力部门和地铁应用中的镍镉口袋板(NCPP)电池。 也用于坦克,在-30°C温度下运行的陆军卡车等。HBL向以色列和阿联酋出口导弹电池。o世界第二大制造商的镍卡德蒙(Ni-CD)电池,带有口袋板,烧结板和纤维板技术。HBL从IGGL(Indradhanush Gas Gas Grid Limited)的Ni-CD电池订购了东北的管道项目,该项目正在执行。此外,它成功将铅酸电池的需求转换为多个电力部门和地铁应用中的镍镉口袋板(NCPP)电池。也用于坦克,在-30°C温度下运行的陆军卡车等。HBL目睹了23财年的有史以来最高的NCPP销售,目睹了铁路(印度铁路和地铁)部门的强劲需求 - 石油和天然气管道项目,印度铁路电气化工作和地铁项目。o HBL正在努力将其镍镉纤维板(NCFP)电池定位为用于铁路滚动库存应用的可靠且具有成本效益的解决方案。此外,HBL正在共同努力,将NCFP电池定位为印度都会大都会的首选选择,并获得了印度以外的性能转介的支持。获得了健康订单,以为美国和加拿大的客户提供其镍镉纤维板(NCFP)电池。o镍镉烧结板电池(NCSP)是HBL的专用电池,可在军用和民用飞机以及直升机和无人驾驶飞机(无人机)中找到应用。该部门满足了整个印度空军的要求,涵盖了飞机和直升机的各种品牌。在23财年,进一步介绍了与印度国防机构建立其能力。印度政府国防部授予该公司及其质量管理系统证书的批准,用于自我检查的用品。在Pilatus,P8-I和V5飞机中获得了其产品归纳的许可证书。它计划在24财年开始对电池进行商业生产,并继续向庞巴迪出口电池,以便在全球7500架飞机和以色列航空航天工业(IAI)中使用,以在无人机中使用。o印度的所有海底推进电池都是“管状板淹没铅酸”。HBL也有出口机会,因为全球有不到十家公司,制作了这样的电池。授予了NSTL / DRDO的合同,以开发用于海底申请的锂离子电池的原型模块。适应用于用于HDW德国(Shishumar)的II型电池类型批准流程,可用于确保制造清除净值的HDW德国(Shishumar)类潜艇。o在市场上只有印度玩家,在数据中心和电信塔中使用的产品篮中拥有高功率的纯铅薄板(PLT)电池。纯铅锡电池是铅电池,旨在在短时间内提供更高的功率(超过汽车)。它们被用于固定发动机启动(康明斯在其品牌下转售HBL制造的电池)。这是印度的两个供应商之一,他们一直向印度海军提供鱼雷推进的电池。HBL还以有限的数量出口这些电池。o提供了火车碰撞系统(TCAS - “自动火车保护”(ATP)系统)和开发的火车管理系统(TMS- TMS-一种集成的实时交通管理系统,可为印度铁路提供监控和控制火车运动的监视和控制) - 私营部门实体是有史以来首次由私营部门实体o HBL签署了与“ Kavach colulision Readeance”(Indian Indian System)签署的4个合同(与Indian Indian System)签署了FY2 3的FY2。它还预计其火车监控系统(TMS),电气光学产品,手榴弹,用于国防应用的电子通信和电动驱动列车的增长。o公司的重点是在竞争有限的利基类别中创建一个业务,而企业将获得良好的投资回报率,例如价值866.70万的投资回报tonbo Imaging India Pvt Ltd,该公司对监视,侦察机和目标的电子方式和成像系统进行了设计和制造。