摘要我们介绍了利用激光多普勒振动仪(LDV)技术的基于氮化铝(ALN)的压电微压超声传感器(PMUT)的非线性。在谐振频率上工作的PMUT将压电层激发到了强非线性区域。观察到非线性现象,例如频移和非平面外位移幅度。使用压电非线性的数学模型用于分析非线性行为,并随后获得了二阶压电系数。在PMUT非线性产生的大约120个谐波下,在相对较高的电压的单色AC信号下实验获得。此外,可以精心控制谐波的数量。开发了三种不同的应用程序来利用声学混合微型系统和射频(RF)领域中的谐波世代。ALN压电非线性的观察和分析可能有益于基于Aln薄片的PMUT的进一步理解。我们认为,生成的谐波可以在信号处理和调制中的多种应用中使用。
本文描述了n型GaAs衬底的晶体取向对在不同n型GaAs衬底取向(即(100)、(311)A和(311)B GaAs面)上生长的厚度为120nm的磺化聚苯胺 (SPAN) 薄膜电学性能的影响。利用室温和不同温度(60−360 K)下的电流密度-电压 (J−V) 进行电学表征。从正向J−V特性中提取了理想因子 (n)、肖特基势垒高度 (Φb) 和活化能 (Ea)。从J−V结果可知,SPAN/(311)B GaAs混合器件在0.5 V时的整流值高于在(100)和(311)A GaAs面上生长的SPAN的整流值。此外,随着这三个异质结器件的温度升高,Φ b 的值增加,n 下降,E a 上升。E a 测量表明,SPAN/(311)B n 型 GaAs 异质结构的 E a 低于在 (100) 和 (311)A n 型 GaAs 平面上生长的 SPAN 样品。这可能与 SPAN/(311)B 中的缺陷数量低于其他两个样品有关。这些结果使得在高指数 GaAs 平面上生长的厚度为 120 nm 的 SPAN 成为未来器件应用的有趣混合器件。
利用 5G 延迟优势实现的 VCSEL 应用部署可以通过使用商业化技术来遵循行业发展时钟速度而受益。[1] 根据功率输出,VCSEL 器件可以根据沉积材料厚度和结构进行大致分类。[2] 本研究量化了与参考金属化膜铝最相关的双层结构特征,以便有效使用。它基于这些发现探索了成功使用常见金属氧化物绝缘体 (SiO 2 / Al 2 O 3 ) 双层处理所需的多元优化,各向同性溅射沉积厚度为 100nm 至 250nm。提出了一个表征关键变量的模型。此外,它还介绍了一种新的高温双层工艺,使用负像抗蚀剂,能够在高温绝缘体沉积期间保持稳定性。本研究确定了制造成功双层的尺寸目标,用于溅射绝缘体,适用于工艺优化,以促进不断发展的 III-V 应用。介绍
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
Axel Rouviller、Moussa Mezhoud、Alex Misiak、Meiling Zhang、Nicolas Chery 等人。磁控溅射生长的钒酸锶薄膜的结构、电学和光学特性。ACS Applied Electronic Materials,印刷中,6 (2),第 1318-1329 页。�10.1021/acsaelm.3c01642�。�hal-04400444�
摘要这项研究有助于研究美国公众对碳捕获和存储(CCS)项目的接受。对塑造公众支持CCS项目的因素的检查为政策制定者提供了见解,以解决公众关注,平衡CCS发展与公众情绪,并就最佳地点和时机做出明智的决定。基于对1850名受访者的全国代表性调查,该研究发现,在美国,CCS技术的熟悉程度非常低(6.4%),而对CCS开发的增加有限的反对(11.5%)。回归结果表明,美国对CCS项目增加的支持受到对技术和社会风险(分别泄漏和社区危险)的看法,但不受生命风险的成本,对环境和经济利益的看法,对技术的熟悉,对政府法规的赔偿以及对美国的渴望以及CCS领导美国的愿望。我们未能找到“不在我的巴克里德”效应,并且支持其州更多CC的个人也在国家一级支持它。了解这些因素有助于决策者预期实施CCS计划的挑战,并允许制定战略来解决关注点。
Ph.D.聚合物化学的学生Max Planck胶体和界面研究所,德国波茨坦,“基于碳的薄膜的化学蒸气沉积:从二进制到三元系统”,主管:H。 c。 MarkusAntonietti有机薄膜的有机薄膜(化学蒸气沉积)和有机薄膜的表征(椭圆表)的新实验室设置有机半导体薄膜的合成:设计和开发用于通过化学蒸气沉积/div>的薄膜材料设计和开发用于薄膜的材料,Ph.D.聚合物化学的学生Max Planck胶体和界面研究所,德国波茨坦,“基于碳的薄膜的化学蒸气沉积:从二进制到三元系统”,主管:H。 c。 MarkusAntonietti有机薄膜的有机薄膜(化学蒸气沉积)和有机薄膜的表征(椭圆表)的新实验室设置有机半导体薄膜的合成:设计和开发用于通过化学蒸气沉积
7。Patil Bhagyashri Madhukar“使用CBD方法的Fe2O3薄膜的准备和光学特性” 8。patil prajakta dipak“ Fe2O3薄膜的合成和光学特性” 9。Patil Puja Ravindra“ CBD方法的Fe2O3薄膜的合成” 10。patil rajnandini vilas“通过通量法对CD的合成和表征” 11。Sonawane Ashwini Gokul“ PBS薄膜的合成和光学特性” 12。thakare ujjwala pradip“ PBS薄膜的合成和光学特性” 13。Borse Sakshi Kailas“ Go Pani和Go-Pani复合材料的合成和表征” 14。Mahajan Shubham Dinesh“ Go Pani和Go-Pani综合的合成和表征”
业界正在研究电阻式存储器件,尤其是那些基于可溶液处理、化学变化且成本低廉的有机材料的器件。在本文中,我们通过在 ITO 基板上旋涂一层有机的钌 (II) 薄层来制造电阻式存储器件。制造的电阻式存储器件利用通过旋涂沉积在 ITO 基板上的钌 (II) 薄层,表现出低电阻和高电阻导电状态。这些特性使它们非常适合电阻式随机存取存储器 (RRAM) 应用。RRAM 因其高可扩展性、快速切换速度和低功耗而成为一种很有前途的非易失性存储器技术。通过利用低电阻和高电阻状态,电阻式存储器件可以有效地存储二进制数据,为各种基于存储器的系统提供潜在应用,包括固态硬盘、嵌入式系统和物联网 (IoT) 设备。有机钌 (II) 薄层的使用为探索电阻式存储器器件的性能和稳定性提供了一种新途径,为 RRAM 技术的进一步发展铺平了道路。” 使用扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和能量色散 X 射线光谱 (EDX) 来表征该器件。还获得了这些器件的电流-电压特性。测量了低电阻和高电阻传导状态,发现它们非常适合电阻式随机存取存储器应用。此外,我们观察到随着有机层厚度的增加,开关得到改善,因此电阻比提高了 10 倍。 (2022 年 12 月 19 日收到;2023 年 8 月 7 日接受) 关键词:钌、开关、器件、电性能
a 诺拉宾特阿卜杜拉赫曼公主大学科学学院物理系,邮政信箱 84428,利雅得 11671,沙特阿拉伯 b 卡玛维尔巴劳帕蒂尔学院 Rayat Shikshan Sanstha 物理系,瓦希,新孟买,400703,马哈拉施特拉邦,印度 c 哈立德国王大学科学学院物理系先进功能材料与光电子实验室(AFMOL),沙特阿拉伯阿卜哈 61413 哈立德国王大学先进材料科学研究中心(RCAMS),沙特阿拉伯阿卜哈 61413,邮政信箱 9004 e 阿斯旺大学科学学院物理系,埃及 f 吉赞大学科学学院物理系,邮政信箱。 114,吉赞,45142,沙特阿拉伯 g 昌迪加尔大学化学系和大学研究与发展中心,莫哈里 - 140413,旁遮普,印度 h 佛罗里达理工大学环境工程系纳米生物技术实验室,莱克兰,佛罗里达州 33805,美国 i 石油和能源研究大学工程学院,德拉敦,248007,印度
