藻酸盐裂解酶和寡聚酸酯裂解酶催化藻酸盐的糖苷键的裂解,藻酸盐,这是由棕色藻类和其他生物体合成的酸性多糖。这些酶高度多样,目前已分为15个碳水化合物活性酶(Cazy)数据库的家族。我们探讨了结构和分类学的多样性,基因和转录本的生物地理分布以及来自全球海洋上层皮科浮游物社区的假定藻酸盐降解酶的潜在环境驱动因素。首先使用序列相似性网络对确定的序列进行分析,以评估其与Cazy成员的关系。与PL5,PL6,PL7,PL17和PL38家族有关的序列具有较高的基因和转录物丰度,温度是携带假定藻酸盐裂解酶基因的社区成员结构的关键驱动力。PL5同源物包括活性位点的关键残基中的变体,分配给“ candidatus pelagibacter”的序列显示出高基因和转录物丰度,与无机磷浓度负相关。序列分配给了黄杆菌和/或γ-细菌类别主导了PL6,PL7和PL17家族,尤其是与未经文化的偏光杆菌和Alteromonas Australica密切相关的序列。在PL38家族中,虽然从planctomycetota,verrucomicrobiota和Bacteroidota的序列分配给分类群,在大多数区域和深度上显示出最高的相对基因丰度,而高表达水平在高纬度的序列中观察到序列中的序列,分配给了euukaryota(例如eukaryota(e.g.,e.g.,phaeocystica)。总体而言,这项研究中发现的推定酶可能参与了各种生理过程,包括藻酸盐同化和生物合成。
为人类肌肉茎(Hmustem)细胞获得的临床前数据表明其在肌肉损伤的背景下的巨大修复能力。但是,它们的临床潜力受到移植后中等生存能力的限制。要克服这些局限性,它们在保护环境中的封装将是有益的。在这项研究中,研究了使用外部或内部凝胶化获得的可调节钙 - 阿尔金酸盐水凝胶作为Hmustem细胞封装的新策略。使用原子力显微镜通过压缩实验来表征这些水凝胶的机械性能。测量的弹性模量强烈取决于胶凝模式和钙/藻酸盐浓度。分别在内部和外部凝胶化后制备的水凝胶获得了从1到12.5 kPa和3.9至25 kPa的值。此外,水凝胶的机械性能差异是由其内部组织产生的,具有内部凝胶的各向同性结构,而外部模式导致各向异性。进一步表明,释放后,保留了藻类水凝胶中掺入的Hmustem细胞的生存力,形态和肌原分化char术。这些结果表明,封装在钙钙酸钙水凝胶中的Hmustem细胞保持其功能,从而可以开发肌肉再生方案以提高其治疗功效。
Div> 1马来西亚马来西亚医学科学学院免疫学系,马来西亚巴鲁市,2个细胞疗法中心(CTC),约旦大学,安曼,安曼,约旦,约旦,医学实验室科学系3,应用医学科学系约旦,马来西亚巴鲁市医学科学医学科学学院医学科学学院4号医学微生物学和寄生虫学系Thick nibong, Malaysia, 7 Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia, 8 LCPM, CNRS, Université de Lorraine, Nancy, France, 9 Tardigradenano LLC, Irvine, CA, United状态
藻酸盐是一种从棕色藻类中提取的自然存在的生物聚合物,它提出了一种有希望的途径,用于开发可持续和效率的废水处理膜。本综述全面研究了基于藻酸盐的膜在制造,修饰和应用有效的水纯净方面的最新进展。纸张研究了各种制造技术,包括铸造,静电纺丝和3D打印,这些印刷不存在所得藻酸盐膜的结构和功能特性。为提高性能,采用了交联,掺入诸如诸如效果,并且采用了表面功能化。这些修改优化了至关重要的特性,例如机械强度,孔隙率,选择性和防毒性抗性。此外,响应表面方法论(RSM)已成为系统地优化制造参数的宝贵工具,使研究人员能够确定达到所需膜特性的最佳条件。将藻酸盐膜与生物处理过程的整合,例如植物修复(利用微藻)和霉菌修复(采用真菌),提供了一种协同方法,以增强废水处理能力。通过将这些微生物固定在藻酸盐基质中,它们的生物修复能力得到扩增,从而改善了污染物降解和营养去除。总而言之,基于藻酸盐的膜表现出显着的潜力,作为废水处理的可持续和有效技术。持续的研究和开发,重点是优化制造过程,并与生物系统探索创新的整合策略,将进一步推动藻酸膜膜在应对水污污染的全球压力挑战时的应用。
摘要:合成微生物联合体在生物技术应用方面具有巨大潜力。然而,由于竞争动态和物种间生长速度不平衡,实现稳定且可重复的共培养具有挑战性。本文,我们提出了一种有效的微生物包封方法,该方法基于涂有 ε-聚-L-赖氨酸 (εPLL-HB) 的海藻酸盐基核壳水凝胶珠。该方法可确保微生物完全封闭,同时允许特征差异很大的几种微生物在珠内持续生长。与壳聚糖和 α-聚-L-赖氨酸(两种最常用的此类包封包覆剂)相比,εPLL 在避免细胞在不同培养条件下和所有测试的微生物菌株逃逸方面表现出优异的性能,同时允许它们在胶囊内增殖。εPLL-HB 能够构建空间组织的共培养,有效地平衡不同生长速度的微生物之间的种群。此外,εPLL-HB 可防止木质纤维素衍生介质中的有毒化合物,并在 -80°C 长期储存后仍能保持其包封效果和活力。εPLL-HB 具有出色的微生物控制、结构完整性和耐化学性,再加上价格低廉和易于制备,使其成为设计合成微生物联合体的多功能工具,在生物技术过程中具有广泛的适用性。
抽象目标牙齿藻酸盐是牙科中用于再现内部和外牙性结构的印象材料之一。藻酸盐是一种非常实惠且易于使用的材料,但是由于其泪液强度较低,因此在准确性方面仍然存在局限性。提高藻酸盐撕裂强度的一种方法是添加填充剂。聚甲基甲基丙烯酸酯(PMMA)是有机填充剂的一个例子,可以用作有效提高尺寸稳定性的替代增强。因此,这项研究的目的是评估添加PMMA作为有机纤维的藻酸盐的泪液强度。材料和方法这项实验研究由四组样品组成。样品A作为对照组,而样本B包括处理的样品,其添加了3WT%(B1),5wt%(B2)和7WT%(B3)的样品。每组有五个样本。使用通用测试机根据ISO标准21563:2021进行泪强度测试,然后使用扫描电子显微镜(SEM)和傅立叶变换Infra-Red(FTIR)光谱进行表征。统计分析然后在Tukey的测试后通过单向方差分析(ANOVA)评估泪强度结果(p <0.05)。结果对照样品(a)的泪强度为0.540 N/mm。同时,处理过的样品的泪强度为0.612 N/mm(B1),0.663 N/mm(B2)和0.596 N/mm(B3)。使用PMMAFILLER的对照与处理的样品之间存在差异(P <0.05)。这些结果由SEM和FTIR结果支持与藻酸盐多孔结构的物理闭合或阻断其功能组的略有变化有关。结论将PMMAFILER添加到牙齿藻酸盐中,随着泪强度的提高提供了增强。这可能会影响印象的准确性,尤其是当材料从口服结构中迅速去除时。其他研究可能会进一步评估生物相容性属性。
目的:慢性伤害也是一个公共卫生问题,有必要开发和应用新材料以促进伤口愈合的更令人满意的结果。因此,这项研究旨在基于与Zn 2+交联的κ-甲rage素和藻酸钠的组合开发天然聚合物膜,以控制莫皮罗辛(MUP)。方法:使用振动光谱(拉曼和红外光谱)来表征化学结构和交联过程。微拉曼成像和扫描电子显微镜分别观察了聚合物的空间分布和样品的形态。对膜的质量,厚度和MUP浓度(MUP释放动力学及其杀菌活性)进行了分析。结果:膜在厚度,质量和MUP数量方面表现出良好的均匀性。但是,抗生素的百分比低于添加的抗生素百分比,表明在膜生产过程中损失。肿胀和释放动力学研究表明膜和受控药物输送过程的肿胀能力良好。使用抑制方法,确定了膜的抗菌活性,以金黄色葡萄球菌,大肠杆菌,表皮葡萄球菌和铜绿假单胞菌的形式确定。所有产生的薄膜均显示出对这些细菌生长的活性。结论:结果说明了在聚合物膜中使用κ-carrageenan和藻酸钠来调节MUP的潜力,目的是开发可改善伤口愈合结果的伤口敷料。
需要有效的临床举措来开发心血管疾病的治疗方法,尤其是心肌梗塞这种最常见的心血管疾病。各种研究都集中在改进再生受损心脏组织的方法上。通过这种方式,工程心脏补片已被用作促进心肌再生的一种有前途的技术。传统的心脏补片无法提供心脏组织的有序结构和电导性。对人体心脏天然细胞外基质 (ECM) 的电导性和有序结构的生物模拟是制造心脏补片的关键因素。在这方面,应采用新方法来制造导电和结构化的心脏补片。合成和天然聚合物已显示出适合生产心脏补片的良好生物相容性和生物利用度特性。本篇小型评论试图提供有关在新型心脏补片中应用海藻酸盐、壳聚糖和聚乙二醇 (PEG) 的最新趋势和挑战。
组织工程的目的是在三维(3D)支架中应用生物材料以改善整个器官或受损组织。天然聚合物作为微观和纳米级的独特生物材料,在组织工程,感染伤口愈合和抗生素递送方面表现出了有希望的应用。Among these biopolymers, alginate, cellulose, and collagen have obtained significant attention in bone regeneration, cartilage repair, tissue healing, microbial-infected wound healing, and 3D scaffolds for cell therapy in different micro- and nanoformulations involving hydrogels, sponges, microspheres, microcapsules, foams, nanofibers, polymeric nanoparticles.此外,免疫原性和微生物感染在组织工程和组织植入物中具有潜在的健康风险。这项简洁的综述提供了藻酸盐,纤维素和胶原蛋白在组织工程以及抗菌微观和纳米成型中应用的最新进展和临床局限性。
摘要:海藻酸盐是一种具有良好生物相容性的天然高分子,是可持续发展和替代石油衍生物的潜在高分子材料。但纯海藻酸盐溶液不具有可纺性,阻碍了海藻酸盐应用领域的拓展。随着静电纺丝技术的不断发展,人们开始采用合成高分子如PEO、PVA等作为共纺剂,增加海藻酸盐的可纺性。而且,利用多流体静电纺丝制备的同轴、平行Janus、三元等多样、新颖的静电纺丝纤维结构,为天然高分子可纺性差的问题找到了新的突破口。同时,多样的静电纺丝纤维结构有效地实现了药物的多种释放方式。海藻酸盐与静电纺丝的强强联合,被广泛应用于组织工程、再生工程、生物支架、药物输送等多个生物医学领域,研究热度持续高涨,尤其在药物的控制输送方面。本综述对海藻酸盐进行了简要概述,介绍了静电纺丝的新进展,并重点介绍了海藻酸盐基电纺纳米纤维在实现脉冲释放、持续释放、双相释放、响应性释放和靶向释放等各种控制释放模式的研究进展。