您可以使用Red Hat OpenStack平台主管Toolkit隔离特定的网络类型,例如外部,项目,内部API等。您可以在单个网络接口上部署网络,也可以通过多主机网络接口分布。使用开放的VSWITCH您可以通过将多个接口分配给单个桥来创建债券。在红色帽子OpenStack Platform安装中使用模板文件配置网络隔离。如果您不提供模板文件,则在配置网络上部署的服务网络。
汽车行业正在经历深刻的变化,这是由于需要更安全,更环保,更容易获得的商品和人员运输系统。启用技术包括电力,数字化和未来车辆的自动化。这些技术由许多板载电子控制单元(ECU)提供动力。典型的现代车辆具有大约100个物理ECU,以实现其功能的各个方面。这些遗产多ECU电子/电气(E/E)架构模型(称为分布式E/E架构)被认为是不足的,因为ECUS的数量及其处理能力需求不断增加。相比之下,新兴的集中式E/E体系结构建议使用更少的物理高性能在板载处理器上,可以在上面创建几乎无限的虚拟ECU来处理各种遗产和现代应用程序。因此,虚拟化技术使多个具有不同操作系统的虚拟ECU能够在单个硬件平台上同时运行,这是现代集中式E/E体系结构的有希望的模型。以这一趋势的启发,本文提供了针对汽车应用的虚拟化技术的结构化且全面的最新审查,涵盖了资源分配,Autosar,外围I/O界面和车内通信网络等领域。我们全面审查了文献,并确定了用于缓存管理,寄生虫处理,用于车载网络的软件网络的虚拟化技术中的研究差距,以及用于增强现代电动汽车现代E/E架构背景下的原型和测试的虚拟化。
2,3,4学生,网络安全系,Paavai工程学院,Namakkal Abstract Cloud Computing对虚拟化的依赖引入了安全风险,尤其是侧道通道攻击,这些攻击利用共享资源来推断敏感数据。这些攻击利用CPU缓存,内存访问模式,时机变化和功耗来从共同定位的虚拟机(VMS)中提取机密信息。本文在虚拟化的云环境中分类了新兴的侧道渠道威胁,分析攻击向量,例如基于缓存的基于内存,基于内存,功率分析,时机和基于网络的侧向通道攻击。它还评估了现有的对策,包括基于硬件的隔离,软件防御和管理程序级别的安全性增强功能。此外,本文探讨了跨VM侧向通道攻击的现实案例研究,并提出了未来的缓解策略,例如AI驱动的异常检测,量子弹性加密和安全的硬件创新。解决这些漏洞对于确保数据机密性和对多租户云基础架构的信任至关重要。加强针对侧通道攻击的防御能力将在云计算的未来安全性中起关键作用。关键字:云安全性,侧渠道攻击,管理程序安全性,多租户云环境简介云计算通过提供可扩展,成本效益和需求计算资源来改变现代IT基础架构。各个行业的组织越来越依赖云服务来存储,处理和管理敏感数据。在云计算的核心上是虚拟化,它使多个虚拟机(VM)能够通过管理程序在共享的物理硬件上操作。虚拟化增强了资源利用率和运营效率,但它也引入了安全风险,尤其是侧通道攻击。侧通道攻击通过共享硬件资源而不是利用软件漏洞来利用间接信息泄漏。在多租户云环境中,攻击者可以通过分析缓存访问模式,内存交互,时机变化,功耗或网络流量来提取敏感数据。与通常需要直接访问目标系统的常规攻击不同,侧渠道攻击使对手可以从共同居民VM中推断机密信息,而不会违反传统的安全机制。日益增长的基础设施 - AS-A-Service(IAAS)和平台为AS-AS-Service(PAAS)模型增加了侧向通道攻击的风险,因为不同的租户经常共享相同的物理
现场可编程门阵列(FPGA)被广泛用于本地加速深度神经网络(DNN)算法,具有高计算吞吐量和能效。虚拟化FPGA和在云端部署FPGA正成为越来越有吸引力的DNN加速方法,因为它们可以增强计算能力,实现跨多用户的按需加速。在过去的五年中,研究人员广泛研究了基于FPGA的DNN加速器的各个方向,例如算法优化、架构探索、容量改进、资源共享和云构建。然而,以前的DNN加速器调查主要集中于在本地FPGA上优化DNN性能,而忽略了将DNN加速器放置在云端FPGA中的趋势。在本研究中,我们深入研究了基于FPGA的DNN加速器中使用的技术,包括但不限于架构设计、优化策略、虚拟化技术和云服务。此外,我们还研究了 DNN 加速器的演进,例如从单个 DNN 到框架生成的 DNN、从物理到虚拟化 FPGA、从本地到云、从单用户到多租户。我们还确定了云端 DNN 加速的重大障碍。本文增强了对基于 FPGA 的 DNN 加速器演进的当前理解。
右侧的可扩展 IOV (SIOV) 是一种硬件辅助 I/O 虚拟化方法,可实现跨隔离域的高度可扩展和高性能 I/O 设备共享。SIOV 支持软件从本机硬件接口灵活组合虚拟功能,而不是实现完整的 SR-IOV 虚拟功能 (VF) 接口。SIOV 设备公开轻量级可分配设备接口 (ADI),这些接口针对来自客户的快速路径(数据路径)操作进行了优化。S-IOV 定义了一种将这些设备接口以细粒度分配给隔离域的方法。
您对数据管理充满热情吗?您想以您的技术知识启用其他人吗?数据正成为Infineon的越来越重要的资产,该团队在使我们的业务能够从制造数据中获得新的见解,在使我们的业务方面发挥了基本作用。在此角色中,您将负责Infineon数据虚拟化平台内部的制造数据域,并与我们的全球用户社区密切合作。
在纽约,德弗里大学(Devry University)担任纽约德文学院(Devry College of New York)。Devry University已获得高等学习委员会(HLC)的认可,www.hlcommession.org。该大学的凯勒管理学院包括在此认证中。devry已通过国务院高等教育为弗吉尼亚州进行经营。阿灵顿校园:1400 Crystal Dr.,Ste。120,阿灵顿,弗吉尼亚州22202。Devry University被田纳西州高等教育委员会(www.tn.gov/thec)授权作为高等教育机构的运营。Lisle校园:4225 Naperville Rd。,Ste。400,Lisle,IL 60532。未解决的投诉可以通过在线符合在线系统https://complaints.ibhe.org/或通过邮件向1 N. Old State Capitol Plaza,Ste。333,斯普林菲尔德,IL 62701-1377。程序可用性随位置而异。在基于站点的计划中,将要求学生在线上大量课程才能完成课程。©2025 Deverry教育发展公司。保留所有权利。版本1/27/2025
我们提出了Asgard,这是第一个基于虚拟化的TEE解决方案,旨在保护传统ARMV8-A SOC的设备DNN。与使用基于信任的TEE进行模型保护的先前工作不同,Asgard的T恤仍然与现有专有软件兼容,保持可信赖的计算基础(TCB)最小值,并在接近零时的运行时开销。到此为止,Asgard(i)(i)通过安全的I/O传球牢固地延长了现有TEE的界限,以通过安全的I/O传球结合了SOC集成加速器,(ii)通过我们积极进取的且安全性的平台和应用程序级别的TCB Debloating Techiques和(IIIIIII)exite-iii iii iii nordie-irie-irie norder-irie norder-irie norder-irie norder-irie norder-irique tcb紧紧控制TCB的大小。合并DNN执行计划。我们在RK3588S上实施了ASGARD,这是一个基于ARMV8.2-A的商品Android平台,配备了Rockchip NPU,而无需修改Rockchip-和Armpriperipary软件。我们的评估表明,Asgard有效地保护了TCB大小和可忽略不计的推理潜伏期的传统Soc中的设备DNN。
(v)SAN群集是VMware“高可用性”功能的先决条件。此功能可以与我们的simatic虚拟化一起用作任何非相似服务器应用程序的服务。它具有虚拟机的高可用性,因此PCS 7,WinCC和其他应用程序。
通过虚拟化,Ovation 组件可以作为虚拟机运行,从而大大减少典型系统上使用的硬件数量。高可用性虚拟化非常适合控制系统实施,需要两个或更多主机服务器。在这种配置中,用户可以将虚拟机集中存储在共享存储区域网络 (SAN) 设备上,也可以使用虚拟 SAN 技术将其本地存储在主机服务器上。用户可以通过小型瘦客户端通过单独的远程桌面协议 (RDP) 网络访问 Ovation 虚拟机。主机基础设施通过专用基础设施网络使用专用管理控制台进行管理。对于控制应用程序,艾默生建议对关键应用程序实施高可用性虚拟化。