A类与B类NSF/ANSI 55将UV系统分为两个不同的类。A类设备旨在灭活和/或去除微生物,包括细菌,病毒,隐孢子虫卵囊和giardia囊肿,从污染的水中。A类紫外线系统不打算用于处理具有明显污染或有意来源的水,例如原污水,也不打算将废水转化为饮用水。它们旨在安装在视觉清澈的水上(不彩色,多云或浑浊)。B类系统是为了对被消毒的公共饮用水或其他具有管辖权的州或地方卫生机构对人类消费进行测试和认为可以接受的饮用水的饮用水,旨在替代杀菌治疗。B类系统旨在减少正常发生的非疾病滋扰微生物。这些系统并非用于消毒微生物学上不安全的水,并且可能不会提出个体或一般的囊肿主张。微生物健康影响主张可能不会对B类系统提出。
家蝇(Musca domestica L.,双翅目:家蝇科)是全球最常见的蝇类之一,在传播对兽医和医学都很重要感染和病原体方面发挥着重要作用。这包括传播肠道蠕虫卵以及体外寄生虫、体内寄生虫和原生动物囊肿。防治害虫的方法包括生物、物理、化学和农业技术方法。化学方法仍然是控制害虫种群的主要策略;然而,过度使用、增加剂量和治疗频率导致了抗药性的产生。迄今为止,已在自然种群中记录了大量对杀虫剂产生抗药性的记录。抗药性产生的一个重要机制是细胞色素系统的酶对外来化合物的解毒。本研究旨在总结目前关于 P450 单加氧酶在产生家蝇杀虫剂抗药性方面的作用的知识。本综述重点介绍了家蝇中导致对最常见杀虫剂产生抗性的细胞色素 P450 单加氧酶的多样性及其在基因组中的位置。在这项研究中,我们识别并描述了与杀虫剂抗性相关的主要 P450 候选基因。作者还总结并系统化了该领域的最新研究成果。
摘要:环虫cayetanensis感染在全球范围很普遍,寄生虫已成为主要的公共卫生和食品安全问题。尽管重要的努力已致力于促进防止和减少环孢子虫病的发生率,但仍有一些知识差距阻碍了实施有效措施的实施,以防止用环孢子虫卵囊污染农产品和水。其中一些数据差距可以归因于以下事实:访问卵囊是C. cayetanensis研究中的一个限制因素。没有动物模型,体内或体外培养系统来传播促进C. cayetanensis研究所需的卵囊。因此,研究人员必须依靠有限的卵囊供应有限的卵囊,从自然感染的人类患者那里获得的卵囊可以极大地限制有关该寄生虫的知识。尽管C. cayetanensis卵囊的供应有限,但在过去的三年中仍发生了一些重要的进步。在菌株和物种的分子表征,基因组产生以及新型检测方法的发展方面取得了巨大进步。这种全面的观点总结了2020年至2023年发表的研究,并评估了我们学到的知识,并确定了需要进一步研究的那些方面。
oxocara cati是一种影响猫的全球流行寄生虫。它是ascarididae家族的成员,其中包括最常见的肠道寄生虫之一。这项研究的目的是研究来自Al-Anbar的两个主要品种(50个Shirazi和50个喜马拉雅品种)的100个个体中的Toxocara Cati的患病率。因此,这是在伊拉克对家猫进行的首次寄生虫研究以及分子特征分析。进行全面检查后,报告了这些动物所表现出的临床指标。为了检查显微镜下的寄生虫卵,我们从每只动物中收集了粪便。一小部分粪便也进行了分子分析。血样还用于研究该寄生虫对嗜酸性粒细胞的影响。基于PCR的方法采用了来自核和线粒体基因组的遗传标记物,由于其敏感性,特异性,速度和有效性,已成为可行的替代品。我们的调查发现,根据分子方法,侵染率为31%(西拉齐(Shirazi)为15,在喜马拉雅山(Himalayan)为16),这与显微镜结果相似。随后,居住在城市Al-Anbar的家猫表现出塔蒂(T. Cati)的患病率升高。因此,开发有效的方法来识别和消除家猫中的T. cati寄生虫,同时对动物和人类健康的公共教育进行优先考虑。
参考文献1。Shafique M,Khurshid M,Muzammil S,Arshad MI,Malik IR,Rasool MH等。穿越气候变化和一种健康的动态。环境科学欧元。2024; 36(1):135。 doi:10.1186/ s12302-024-00931-8。2。liao H,Lyon CJ,Ying B,Hu T.气候变化,其对新兴传染病的影响和应对挑战的新技术。新兴微生物感染。2024; 13(1):2356143。 doi:10.1080/22221751.2024.2356143。3。Turner WC,Kamath PL,Van Heerden H,Huang YH,Barandongo ZR,Bruce SA等。环境变化和寄生虫生存在毒力传播关系中的作用。r Soc Open Sci。2021; 8(6):210088。 doi:10.1098/rsos.210088。4。awad da,Masoud HA,Hamad A.气候变化和食物传播的病原体:对人类健康和缓解策略的影响。攀登变化。2024; 177(6):92。 doi:10.1007/s10584-024-03748-9。5。CisséG。低收入和中等收入国家的气候变化下的食物传播和水传播疾病:降低环境健康风险所需的进一步努力。acta trop。2019; 194:181-8。 doi:10.1016/j。 actatropica.2019.03.012。 6。 lópezUreñaNM,Chaudhry U,Calero Bernal R,Cano Alsua S,Messina D,Evangelista F等。 用弓形虫卵囊污染土壤,水,新鲜农产品和双壳类软体动物:系统评价。 微生物。 2022; 10(3):517。 doi:10.3390/微生物10030517。 7。 谁; 2021。2019; 194:181-8。 doi:10.1016/j。actatropica.2019.03.012。6。lópezUreñaNM,Chaudhry U,Calero Bernal R,Cano Alsua S,Messina D,Evangelista F等。用弓形虫卵囊污染土壤,水,新鲜农产品和双壳类软体动物:系统评价。微生物。2022; 10(3):517。 doi:10.3390/微生物10030517。7。谁; 2021。世界卫生组织(WHO)。气候变化和健康。可从:https://www.who.int/ news-room/fact-seats/delead/climate-change-change-and-Health。2024年12月17日访问。8。Neira M,Erguler K,Ahmady-Birgani H,Al-Hmoud ND,Fears R,Gogos C等。地中海东部和中东的气候变化和人类健康:文献综述,研究重点和政策建议。环境。2023; 216(PT 2):114537。 doi:10.1016/j.envres.2022.114537。9。Waha K,Krummenauer L,Adams S,Aich V,Baarsch F,Coumou D等。气候变化影响中东和北非地区(MENA)地区及其对脆弱人群群体的影响。reg Environ Change。2017; 17(6):1623-38。 doi:10.1007/s10113-017-1144-2。 10。 Garedaghi Y. 保护寄生虫对COVID-19和的保护2017; 17(6):1623-38。 doi:10.1007/s10113-017-1144-2。10。Garedaghi Y.保护寄生虫对COVID-19和
简介:脑包虫囊肿是由包虫卵在颅腔内沉积和生长引起的。CT 显示边界清晰、非造影增强、实质内均质性囊性肿块。囊液与脑脊液 (CSF) 等信号。手术是治疗脑包虫囊肿最优选的治疗方法。我们介绍了过去 5 年内接受手术的 4 例病例,以引起人们对最近在我国出现的脑包虫囊肿的关注。方法:我们有 4 例脑包虫囊肿患者在 2015 年至 2020 年间接受手术治疗。结果:我们有 3 名男性和 1 名女性患者。他们的年龄在 9 至 16 岁之间,平均年龄为 13 岁。其中 3 例为单发包虫囊肿;1 例为多发包虫囊肿。我们病例的常见症状是头痛。患者因双侧第六脑神经麻痹而出现癫痫、复视、右侧偏盲和斜视。讨论与结论:脑包虫囊肿在儿童期最常见(70%)。我们所有的病例都有头痛和视乳头淤滞。此外,我们的第二例患者患有癫痫,第三例患者患有右侧偏盲,第四例患者患有复视。最近,由于中东局势,许多移民离开他们的国家并居住在国外,其中一些人已经受到感染。我们可以说,我们必须更新我们对包虫囊肿的认识,并意识到由于移民模式可能会出现新的病例。关键词:胚胎;幼虫;多发性脑内包虫囊肿;单独性脑内包虫囊肿。
“纯粹的喜悦”可能不是你期望在目的陈述中看到的第一个短语,但纯粹的喜悦是描述我第一次改变人类细胞基因组时感受的唯一方式。在我对这些细胞进行测序后,我的分析显示,经过数月的故障排除后,编辑效率仍未达到。这个秘密来自我找到并适应我们系统的新预印本,这意味着我们离理解一种假定的适应性变体在选择下在代谢中的作用如何发挥作用又近了一步。正是这种能够提出以前未知的问题,了解我们周围世界的工作方式,并真正得到答案的能力——即使在多次失败之后——促使我继续我的研究生生涯。除了进化生物学和基因组学之外,我无法想象自己能找到如此有趣的问题来解决,如此激发我整个大脑的问题。杜克大学的遗传学和基因组学系正在提出这些关于现实世界、基础生物学的广泛问题,这一事实让我深感兴奋,能够加入这个研究人员社区,他们不断致力于追求该领域的卓越。我第一次体验到这样一个社区能够理解这种似乎永无止境的求知欲望,那是在我第一次进行实地研究探险的时候。白天,我在落基山脉收集金鱼草杂交花,与维也纳科学技术研究所的 Nick Barton 博士实验室一起进行基因分型。晚上,我在夜间的实地团队晚餐上聆听了几个小时绝对迷人的博士后和研究生们热烈讨论生态学、杂交区和自然选择等各种问题。我只想成为他们中的一员,参与这些对话并做出有意义的贡献。自然而然,这种对科学的热爱让我在两个月后就周末在环境控制室里收集虫卵。从西班牙回来后,我找到了韦尔斯利学院生物系唯一的进化生物学家 Andrea Sequeira 博士。在她的实验室里,我深入研究了一个项目,研究两种克隆繁殖的入侵昆虫物种如何将其基因表达程序适应各种新宿主植物。我们能够观察到基因表达差异与可用宿主植物类型之间的关联,令人惊讶的是,这些基因表达差异在成虫和进食前的后代之间也存在。这是我第一次理解生态学、测序技术和进化生物学如何整合起来,提出任何领域都无法单独解决的问题。我将这个项目从实验台推进到分析阶段,最终完成了我的系荣誉论文、PLOS One 1 上的第一作者出版物,并在 2019 年国际进化会议上介绍了这个项目。在这里,我能够与不同的研究人员进行深入的对话,而这些对话曾经超出了我的理解范围,我们对解读生命复杂性有着共同的兴趣。这让我坚信,研究社区是唯一可以满足我一生继续研究进化问题的愿望的地方。虽然我是在 COVID-19 疫情期间毕业的,但我在麻省理工学院和哈佛大学布罗德研究所的 Pardis Sabeti 博士的实验室里找到了一个可以推动我发挥智力极限的新家。在这里,我开始研究基因组学的一个基本问题:DNA 序列如何影响基因表达?我为我们小组开发高通量 CRISPR 干扰筛选做出了贡献,该筛选可以识别任何基因的非编码调控元件,我作为共同作者在《自然遗传学》杂志上发表了描述该方法的论文 2,这反映了这一点。然后,我开始关注一个相关问题,即这些调控元件内的非编码人类变异如何影响基因表达,并开发了我尖端的分子基因组学方法和计算分析工具。我致力于优化 CRISPR-Cpf1 基因组编辑方法,以测试假定的因果非编码多态性的功能后果。利用这些等位基因