摘要:如今,电介质元面是一个有前途的平台,在许多不同的研究领域,例如传感,激光,全光调制和非线性光学器件。在所有不同类型的薄结构中,不对称的几何形状最近引起了人们的兴趣越来越高。尤其是,跨膜中的非线性光 - 物质相互作用构成了实现对光的微型控制的有效方法。在这里,我们通过第二次谐波生成在介电上表面上展示了非线性不对称产生。通过反转泵的照明方向,非线性发射功率由多个数量级调节。此外,我们演示了正确设计的元表面如何在逆转照明方向时在第二个谐波上产生两个完全不同的图像。我们的结果可能会为实现紧凑型纳米光量设备的重要机会铺平道路,以通过密集整合众多非线性谐振器来对应用进行成像。
摘要:锂邻磷酸锂(Li 3 PS 4)已成为固态电池电池的有前途的候选人,这要归功于其高电导阶段,廉价的组件和较大的电化学稳定性范围。尽管如此,Li 3 PS 4中锂离子转运的显微镜机制远非充分理解,PS 4动力学在电荷运输中的作用仍然存在争议。在这项工作中,我们建立了针对最先进的DFT参考的机器学习潜力(PBESOL,R 2扫描和PBE0),以在Li 3 PS 4(α,α,β和γ)的所有已知阶段(α,α,β和γ)的所有已知阶段解决此问题,以实现大型系统大小和时间尺度。我们讨论了观察到的Li 3 PS 4的超级离子行为的物理来源:PS 4翻转的激活驱动了结构性过渡到高导电阶段,其特征在于Li地点的可用性增加以及锂离子扩散的激活能量的急剧降低。我们还排除了PS 4四面体在先前声称的超级离子阶段中的任何桨轮效应,这些阶段以前声称,由于PS 4 Flips的速率和Li-ion Hops在熔化以下的所有温度下,li-ion扩散。我们最终通过强调了Nernst -Einstein近似值以估计电导率的失败来阐明电荷转运中外部动力学的作用。我们的结果表明,对目标DFT参考有很强的依赖性,而PBE0不仅对电子带隙,而且对β-和α -LI 3 PS 4的电导率提供了最佳的定量一致性。
摘要:很少的石墨烯具有低能载体,其表现为巨大的费米子,在运输和光散射实验中都表现出有趣的特性。将共振拉曼光谱的激发能降低至1.17 eV,我们将这些巨大的准粒子靶向在靠近K点的分裂带中。低激发能量削弱了可见的一些拉曼过程,并诱发了双层和三层样品中共振2D峰的子结构的更清晰的频率分离。我们遵循每个子结构强度的激发能量依赖性,并将双层石墨烯的实验测量与从头算的理论计算进行比较,我们追溯了对探测电子散布接近的电子散布和增强电子 - 唱机元件元素元素的关节效应的此类修改。关键字:石墨烯,拉曼,电子 - 声子,巨大的狄拉克费米,运输
95 Online Systems Software 195844 Individual AI Yoga Guru Saanvi Tayal Rahul Public School Delhi New Delhi 96 Online Systems Software 196523 Individual Valuable Trash Pranet Hiranandani The Cathedral and John Connon School Maharashtra Mumbai 97 Online Systems Software 197246 Individual Parkinson Disease Detection Using Markerless Video Arav Dhoot Neerja Modi School拉贾斯坦斋浦尔98在线翻译医学科学196411团队洞察力Arya Neel Aryel Arjun Raks Raks Pallikooodam Tamil Nadu Coimbatore 99在线转化医学科学196372个体视野内部的游戏研究阿尔茨海默氏症的评分算法Prisha Goyal Scope公立学校Madhya Bhopal 101在线转化医学科学196966 Team Parkinstep:电子监视器 - 揭幕帕金森氏症的步态
在2009年2月10日,操作Iridium 33与废弃的Cosmos 2251之间的碰撞促进了政策的变化,迎来了碰撞评估和回避的新时代。数据能够对碰撞进行碰撞评估的数据是高精度目录(HAC)的数值集成特殊扰动(SP)模型,当时该模型当时受到公众的限制,但该集团由当时被称为联合空间操作中心(JSPOC)进行连接检测。仅HAC就无法描述操作和可操作卫星的连接风险,因为它没有包含操作员的测量,机动历史或操纵计划。JSPOC不知道Iridium的独立跟踪或操纵计划,Iridium无法使用HAC。各方,虹膜和JSPOC,需要信息的另一半才能知道可能发生碰撞。将使用当时无法使用的合并数据对碰撞进行重新访问,并告知自2009年以来所做的更改的有效性。
a 荷兰马斯特里赫特大学 MERLN 技术研究所 - 启发再生医学 b 荷兰马斯特里赫特马斯特里赫特大学眼科诊所、马斯特里赫特大学医学中心 c 挪威奥斯陆奥斯陆大学医院医学生物化学系 d 挪威奥斯陆奥斯陆大学医院眼科系 e 德国科隆科隆大学医学院和大学医院眼科系 f 法国巴黎巴黎城市大学 APHP 内克尔大学医院 - 儿童疾病眼科系 g 法国巴黎索邦巴黎城市大学科德利埃研究中心 h 英国纽卡斯尔皇家维多利亚医院眼科系 i 英国纽卡斯尔纽卡斯尔大学生物科学研究所 j 芬兰坦佩雷坦佩雷大学医学与健康技术学院 k 英国伦敦伦敦大学学院眼科研究所 l意大利米兰圣拉斐尔医院眼科修复实验室角膜和眼表科 m 保加利亚瓦尔纳医科大学眼科和视觉科学系 n 比利时埃德海姆安特卫普大学医院眼科系 o 美国马萨诸塞州波士顿哈佛医学院 Schepens 眼科研究所 p 爱尔兰戈尔韦大学再生医学研究所 q 意大利布雷西亚布雷西亚大学眼科诊所医学和外科专业、放射科学和公共卫生系 r 意大利威尼斯威尼托银行基金会 s 德国科隆科隆大学科隆分子医学中心 t 瑞典林雪平林雪平大学生物医学和临床科学系眼科分部
缺血性心脏病是全球最常见的死亡原因(1)。在2019年,缺血性心脏病和中风是50 - 74年,75岁和年龄段(2)中残疾调整寿命(DALYS)的最高原因(dalys)。缺血性心脏病是由于冠状动脉中脂肪物质的积累,被称为动脉硬化。缺乏足够的血液供应通常会引起诸如胸痛(心绞痛),呼吸急促,一般疼痛,感到微弱或恶心等症状(3)。缺血性心脏病如果未被诊断和治疗会导致心脏病发作。当血液流向心脏的血液被严重减少或完全切断时,就会发生心脏病发作,以使某些肌肉死亡并且心脏无法像正常一样泵送(4)。缺血性心脏病的危险因素包括高血压,高胆固醇,高脂蛋白,糖尿病,缺乏常规运动,烟草使用,超重和肥胖以及家族史(3)。可以预防这些风险因素中的许多。
摘要:随着生物医学技术的进步,智能材料的引入将变得越来越相关。智能材料对外部刺激(例如,化学,电气,机械或磁信号)或环境环境(例如温度,照明,酸度或湿度)有所反应,并提供多种生物学过程是智能材料和生物学系统之间许多类似物的原因。使用不同的感应原理和制造技术开发了基于此类材料的几种应用。在生物医学领域,力传感器用于表征组织和细胞,作为开发智能手术器械的反馈,以进行微创手术。在这方面,目前的工作概述了有关涉及智能材料的生物医学应用实力测量方法的最新科学文献。尤其是,根据其结果和应用,对文献中提出的主要方法的性能评估进行了审查,重点是其计量特征,例如测量范围,线性性和测量精度。基于智能材料的力量测量方法的分类是根据其潜在应用提出的,突出了优势和缺点。
无虹膜症是一种罕见的眼部疾病,由配对盒 6(PAX6)基因突变引起,由于缺乏长期挽救视力的治疗而导致视力丧失。治疗无虹膜症的一种方法是基于 CRISPR 的靶向基因组编辑。为了使携带与患者相同的突变的无虹膜症 Pax6 小眼(Sey)小鼠模型能够进行基于 CRISPR 的治疗方法的临床前测试,我们内源性标记了 Sey 等位基因,从而可以对每个等位基因中的蛋白质进行差异检测。我们在体外优化了一种校正策略,然后在我们新小鼠的生殖系中进行体内测试,以验证 Sey 突变的因果关系。通过 PCR 以及桑格测序和下一代测序分析了基因组操作。通过裂隙灯成像、免疫组织化学和蛋白质印迹分析对小鼠进行了研究。我们成功地实现了体外和体内 Sey 突变的种系校正,前者平均校正了 34.8% ± 4.6% SD,后者恢复了 3xFLAG 标记的 PAX6 表达和正常眼睛。因此,在本研究中,我们创建了一种新型无虹膜小鼠模型,证明了仅对 Sey 突变进行种系校正即可挽救突变表型,并开发了一种基于 CRISPR 的等位基因区分无虹膜策略。