通常,Mxenes具有三个公式:m 2 x,m 3 x 2和m 4 x 3(m =早期过渡金属和x = c或n)。在m 2 x中,过渡金属原子形成蜂窝状晶格,另一个过渡金属原子在蜂窝晶格的中心发现。它显示了平面内化学排列,也称为i-Mxene。然而,M 3 x 2和m 4 x 3从平面化学排序(称为O-Mxene)中显示出,其中过渡金属原子位于周长层中,而其他原子占据了中心层。23 i-mxenes也可以通过将1/3的外国过渡金属或稀土元件m*替换为m 2 x中的m*,即(M 2/3 m* 1/3)2X。24 m*可能是磁性或非磁性(NM),具体取决于我们的选择。另一方面,O-Mxenes由公式M 2 m* x 2或m 2 m* 2 x 3表示。mxenes。 ,最大(m n +1 ax n)陶瓷,称为最大相。 使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。 在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。 最大阶段已知具有生长间结构,最大(m n +1 ax n)陶瓷,称为最大相。使用HF,LIF/HCl或NH 4 HF 2溶液选择性蚀刻M N +1 AX N的去除,从而产生单片或几张extriention Metal,称为MXENES。在公式m n +1 ax n中,m项表示早期过渡金属元件,例如ti,zr等,而a则指的是si,al等组IIIA或IVA元素,例如Si,Al等;另一方面,X项表示C,N或两者兼而有之。最大阶段已知具有生长间结构
AMS2700 1 耐腐蚀钢的钝化 ASTM B912 1 通过电解抛光对不锈钢合金进行钝化 电镀 AMS2460 1 镀铬 AMS-QQ-C-320 1 镀铬(电沉积) AMS2403 1 镀镍(通用) AMS-QQ-N-290 1 镀镍(电沉积) AMS2418 1 镀铜 ASTM B545 1 锡电沉积涂层标准规范 MIL-T-10727 1 锡镀层:电沉积或热浸,用于黑色金属和有色金属 MIL-G-45204 1 镀金,电沉积 ASTM B700 1 银电沉积涂层标准规范 AMS-QQ-S-365 1 银镀层,电镀,一般要求 ASTM B633 1 钢铁上锌电镀层的标准规范 AMS-QQ-Z-325 1 锌涂层,电镀层 ASTM F1941 1 机械紧固件上电镀层的标准规范 AMS2417 1 镀层,锌镍合金 AMS2461 1 镀层,锌镍合金(12 至 16% Ni) AMS-QQ-P-416 1 镀层,镉(电镀) AC7108/10 化学镀 AMS2404 1 镀层,化学镀镍漆 MIL-DTL-18264 1 表面处理,有机,武器系统,应用和控制 MIL-PRF-22750 1 涂层:环氧树脂,高固体MIL-PRF-23377 1 底漆涂层:环氧树脂,高固体 MIL-PRF-85285 1 面漆,飞机和支持设备 UBC90992 2 整流罩,底漆和面漆应用 UBC90990 2 聚氨酯雨蚀涂层干膜润滑剂的应用 MIL-PRF-46010 1 润滑剂,固体薄膜,热固化,防腐 (S-1738) AC7108/7 IVD 铝 MIL-DTL-83488 1 涂层,铝,高纯度(离子气相沉积 (IVD)) 热处理 AMS2770 1 锻造铝合金零件的热处理 AMS2771 1 铝合金铸件的热处理 AMS2759 1 热处理沉淀硬化耐腐蚀、马氏体时效和二次淬火钢件 AMS2769 1 真空下零件热处理 AMS2801 1 钛合金零件热处理 AMS-H-81200 1 钛及钛合金热处理 HIP GPS70001 2 材料要求,Ti-6Al-4V ELI LPBF GPS70003 2 材料要求,铝 F357 LPBF AMS4992 2 铸造,结构熔模,钛合金 6Al-4V 热等静压 AC7102/1 钎焊 AWS C3.7 2 铝钎焊规范 AC7102/3 表面处理 AMS-S-6090 2 渗碳级钢件的渗碳和热处理 核心处理 UBC90983 2* Fab,核心处理 UBC90982 2* Fab,Cycom 5320,夹层复合材料制造UBC90978 2* 湿式覆铜板,Cond,Perm UBC90980 2* Fab,Cycom 5320,层压板 UBC90982 2* Fab,Cycom 5320,夹层 UBC90985 2* 制造,SQRTM,5320-1 UBC90986 2* Tencate EX1522/4581 蜂窝状天线罩结构 UBC90988 2* 囊式制造,Cycom 5320
非周期性就是您所需要的:用于高性能复合材料的非周期单瓦片 Jiyoung Jung 1,2、Ailin Chen 1,2 和 Grace X. Gu 1,* 1 加利福尼亚大学机械工程系,美国 CA 伯克利 94720 2 这些作者对这项工作做出了同等贡献 * 通讯作者:ggu@berkeley.edu 摘要 本研究通过采用非周期单瓦片(覆盖非平移对称表面的形状)引入了一种新颖的复合材料设计方法。采用计算和实验相结合的方法,我们研究了用这些单瓦片制作的复合材料的断裂行为,并将它们的性能与传统的蜂窝状图案进行了比较。值得注意的是,与蜂窝设计相比,我们基于非周期单瓦片的复合材料表现出了优异的刚度、强度和韧性。这项研究表明,利用非周期结构固有的无序性可以迎来新一代坚固而有弹性的材料。 1. 简介 复合材料因其可定制的机械性能而备受赞誉,是航空航天和生物医学领域不可或缺的轻质结构部件。1-5 这些材料的强度在于它们的复合性质——结合不同基础材料的特性可以创建具有多种所需特性和谐平衡的复合材料。这一概念在生物材料 6-11 中得到了很好的体现,例如珍珠层和木材,尽管它们由相对较弱的成分组成,但其机械性能通常优于工程材料。传统工程复合材料通常以重复的单元为特征,这一特征简化了设计和制造过程。然而,这种有序结构在临界载荷下会导致灾难性的故障。同时,生物材料通常呈现无序结构,其中单元在空间上有所不同。12 这种无序在改善生物材料机械性能方面发挥的作用程度仍然是正在进行的研究课题。具有不规则或无序微观结构的材料的固有优势最近引起了科学界的兴趣。 13-15 这些结构具有异质微结构的特征,可以为应力波传播提供强化路径,从而提高重载下的弹性。16-19 新兴研究表明,通过放大这种不规则性,可以提高特定细胞框架的缺陷容忍度。20 此外,多晶结构的微观复杂性,包括晶界、沉淀物和相,被视为具有增强韧性的工程材料的潜在模板。21,22 目前创建这些异质结构的方法涉及在规则晶格结构内随机移动节点、构建材料泡沫等技术,或堆叠具有不同微观结构的材料 17,23,24 然而,这些方法给设计和制造带来了一层复杂性,尤其是由于不同取向的晶胞组装不完美而带来的挑战。为了应对这些挑战,我们的研究提出了将非周期单瓦片集成到复合材料设计中。正如最近文献中发现的那样,非周期单瓦片已被证明可以完全覆盖具有内在非周期性的表面。25 这使它们成为创建无序材料的理想选择。在复合材料设计中使用非周期单瓦片将有助于实现可调特性,同时保持出色的界面结合。在这项工作中,我们探索了一个全新的架构系列
自2005年发现石墨烯以来,相互作用的2D电子系统中特殊地面的形成引起了人们的关注[1]。除了磁有序外,还报告了有关最近实验中的电荷顺序和与Mott阶段配对的报道[2-4]。在WSE 2 /WS 2层[5,6]和α -rucl 3 [3,4]中的最新实验中,我们分析了在双层激子中存在莫特相的条件,并且在量子和热波动方面的稳定性及其稳定性。氯化氯化物α-相(α -rucl 3)是一种具有强旋轨耦合的分层化合物,以其有趣的电子特性而闻名,尤其是其在量子材料中的潜在使用和自旋液体相[7-12]。其电子结构受RU 4 d轨道和晶体场效应的影响。α相具有强旋轨耦合的特征,该耦合表现出多轨蜂窝状莫特绝缘阶段[3,7,13-19]。对于相关电子系统的研究,此阶段特别有趣。已经对α -rucl 3的蜂窝晶格的电子结构的作用进行了广泛研究,使用光发光表格[14],拉曼散射[20-22],光发射光谱[23],THZ光谱[24,25],x-雷雷镜[26] intrastry sptription [26] intrastry Sptiptrys [26] [27]。尽管Mott Gap的大小正在争论中,但在实验研究中已经证明了Mott绝缘子在α -RUCL 3中的存在[13,17,21,23]。Qiu等。 参考文献中报告。 1。Qiu等。参考文献中报告。1。调查Mott绝缘子的核心任务之一应解决带电颗粒分布的刚度。这在很大程度上取决于间隙的大小相对于跳跃速率以及材料的化学掺杂。通过化学掺杂Mott绝缘子来调整材料特性是非常具有挑战性的。具有示例性莫特绝缘子的有前途的候选者是α -rucl 3,顶层的石墨烯是α -rucl 3。而α -rucl 3带有孔,而额外的石墨烯片充当电子储层。[3]如何量身定制由石墨烯和α -rucl 3组成的范德华异构结构等电子结构。该材料的示意图如图然后,石墨烯层的电子和α -rucl 3层中的孔会受到有吸引力的层间相互作用,从而导致激子的形成[28]。在此设置中,激子的密度通过电子的密度控制,后者通过连接到石墨烯片的电栅极调节[3]。栅极电压诱导激子气体的有效化学电位µ。与化学掺杂相反,来自石墨烯的掺杂提供了连续的可调节性,并且不会引入不希望的晶格失真。分别对电子和孔的内部排斥可以产生电荷密度波或广义的Wigner晶体[29]。电荷顺序也可能是由电子 - 波相互作用引起的[30]。基于自一致的Hartree-fock或连贯的电位近似[31]的最新计算表明,如果对材料的特定细节计算自我能量,则复杂的自我能量可以描述实验结果的合理近似来描述实验结果。不参考特定的显微镜机制,这是对双重
分子生物技术:对快速变化领域的全面方法,本教科书提供了分子生物技术的权威介绍,该领域自成立以来就经历了重大转变。有超过25年的连续出版物,分子生物技术:重组DNA的原理和应用已成为学生和教育者的领先资源。最新版本涵盖了广泛的主题,包括微生物,植物和动物基因组的DNA测序和基因工程的尖端技术。这包括人类的基因组编辑,该编辑彻底改变了该领域。本书还提供了有关疾病诊断,更有效的噬菌体疗法的免疫学分析的最新信息以及处理抗生素耐药细菌的创新策略。文本还深入研究了疫苗开发的领域,涵盖了用于流感,结核病和病毒威胁的新的和新兴的疫苗,例如Zika和Sars-Cov-2。此外,它探讨了分子生物技术在工程细菌中的应用,以执行塑性降解,使用绿藻产生氢,并改变氨基酸的生物合成。此外,该书讨论了植物中人性化的单克隆抗体的产生,杂种植物的修饰以产生克隆杂种,并保护植物免受病毒和真菌疾病的侵害。具有近600个详细的数字,分子生物技术是入门生物技术的本科和研究生课程的理想教科书,以及专门针对医学,农业,环境和工业应用的专业课程。分子生物技术:重组DNA的原理和应用是一本权威的教科书,已将学生介绍到不断发展的生物技术领域已有25年以上。该综合指南涵盖了分子生物技术的各个方面,包括DNA测序,基因工程和人类基因组编辑中的最新技术。这本书具有近600个详细的数字,使其成为入门生物技术入学和研究生课程的理想资源,以及着重于将该技术应用于医疗,农业,环境和工业应用的课程。主题包括用于疾病诊断的免疫学测定,噬菌体治疗以及对抗抗生素耐药细菌的策略。此外,该书还探讨了疫苗针对流感,结核病和诸如Zika和Sars-Cov-2等新兴病毒威胁等疾病的新发展。它还深入研究了植物中人性化的单克隆抗体的生产,修饰杂种植物以产生克隆杂种,并保护植物免受病毒和真菌疾病的侵害。分子生物技术的第六版:重组DNA的原理和应用已通过分子生物技术的最新进展进行了更新,包括用于塑料降解的工程细菌,通过绿藻产生氢,改变氨基酸生物合成和创造设计师的蜂窝状细胞。分子生物技术提供了一种用于塑料降解的工程细菌,用于氢生产的绿藻和改变氨基酸的生物合成。它还涉及在植物中产生人源化的单克隆抗体,并修饰杂种植物以产生克隆杂种。此外,该领域还包括保护植物免受病毒和真菌疾病的技术。本书分子生物技术涵盖了诸如基本技术,重组蛋白质的产生,分子诊断,蛋白质治疗,核酸,核酸,疫苗,疫苗,工业和环境用途以及分子生物技术对社会的影响。本书具有600多个详细的数字,使其成为入门生物技术入学和研究生课程的理想资源,以及专门针对医学,农业,环境和工业生物技术应用的专业课程。重组DNA第五版的分子生物技术原理和应用。分子生物技术原理和重组DNA第6版的应用。重组DNA第四版的分子生物技术原理和应用。分子生物技术原理和重组DNA第5版PDF的应用。
纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、