摘要 - 与循环微泡注射结合的经颅聚焦超声(FUS)是唯一的非侵入性技术,它在时间和局部局部打开了血脑屏障(BBB),使靶向的药物允许进入中枢神经系统(CNS)。但是,单元FUS技术不允许同时靶向具有高分辨率的几个大脑结构,并且需要多元素设备来补偿头骨引入的畸变。在这项工作中,我们介绍了声学全息图在小鼠的两个镜像区域进行双侧BBB开口的第一个临床前应用。该系统由一个以1.68 MHz工作的单元素集中的换能器组成,并与3D打印的声性全息图耦合,旨在在体内在麻醉的小鼠中产生两个对称焦点,同时构成了由骷髅头造成的波段差异。T1赢得的MR图像显示在两个对称的准球面斑点处的gadolinium散发。通过编码时间转换领域,全息图能够在小型临床动物头骨内部多个斑点的衍射极限附近以分辨率的分辨率聚焦的声能。这项工作证明了全息图辅助BBB开放对单独半球对称区域中中枢神经系统中的低成本和高度局部靶向药物递送的可行性。
选择性血脑屏障 (BBB) 和神经血管耦合的存在是中枢神经系统血管系统的两个独特特征,它们导致神经元、神经胶质细胞和血管之间有密切的关系。这导致神经退行性疾病和脑血管疾病之间存在显著的病理生理重叠。阿尔茨海默病 (AD) 是最常见的神经退行性疾病,其发病机制尚待揭开,但主要在淀粉样蛋白级联假说的指导下进行探索。无论是作为神经退行性的诱因、旁观者还是后果,血管功能障碍都是 AD 病理难题的早期组成部分。这种神经血管退行性的解剖和功能基础是 BBB,它是血液和中枢神经系统之间的动态半透性界面,一直被证明存在缺陷。已证明几种分子和遗传变化会介导 AD 中的血管功能障碍和 BBB 破坏。载脂蛋白 E 的 ε 4 异构体是 AD 最强的遗传风险因子,同时也是 BBB 功能障碍的已知启动子。低密度脂蛋白受体相关蛋白 1 (LRP-1)、P-糖蛋白和晚期糖基化终产物受体 (RAGE) 是 BBB 转运蛋白的例子,它们在淀粉样蛋白 β 的运输中发挥着作用,因此与 AD 的发病机制有关。目前,尚无改变这种沉重疾病自然病程的策略。这种失败可能部分归因于我们对疾病发病机制的误解以及我们无法开发出能有效输送到大脑的药物。BBB 本身可以作为靶点或治疗载体,可能代表着一种治疗机会。在这篇综述中,我们旨在探索 BBB 在 AD 发病机制中的作用,包括遗传背景,并详细说明如何在未来的治疗研究中针对它。
血脑屏障 (BBB) 是脑与外周循环之间的动态脑屏障。血脑屏障由脑毛细血管内皮细胞、周细胞和星形胶质细胞端足组成,可有效保护脑免受血液中有害毒素和病原体的侵害 (1,2)。血肿瘤屏障 (BTB) 是指位于脑微血管附近的改良血脑屏障,这种屏障是由于原发性脑肿瘤(包括神经母细胞瘤和其他内脏癌症,如肺癌、乳腺癌、黑色素瘤等)的存在导致神经血管单元发生变化而形成的 (3)。血脑屏障中 P-糖蛋白 (P-gp) 的表达可防止不必要的血液毒素和信号分子进入脑 (4-6)。这种复杂的结构不仅维护脑稳定性,而且还保护脑免受外界因素的影响。另一方面,当脑部出现病理改变时,药物可能难以穿透BBB和BTB屏障,使得药物治疗脑部疾病变得困难(7-9)。
摘要 - 本文介绍了通信材料的设计及其在传感建筑行业传感混凝土中的应用。在构建和结构健康监测的背景下介绍了交流材料及其问题的概念之后,本文描述了迄今为止在物理开发中所做的主要贡献,这些贡献预计将超过三十年。为了获得它,使用具有传感和通信节点的两级无线传感器网络提出了特定的网络物理结构。为了最大程度地提高交流混凝土的寿命,通过两个建议来改善节能问题:使用无线功率传递的原始能源收集系统,用于嵌入式感应节点和分析估计模型,以预测通信节点网络的能量消耗。
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。
儿童脑肿瘤是最常见的实体肿瘤,也是儿童、青少年和青年期癌症死亡的首要原因。目前对大多数此类肿瘤的治疗远非最佳,许多肿瘤的预后仍然不容乐观。目前医疗治疗失败的主要原因之一部分是由于血脑屏障 (BBB) 的存在,它限制了药物向肿瘤的输送。在过去的 20 年里,使用低强度脉冲超声 (LIPU) 打开 BBB 已成为一种有前途的增强药物向大脑输送的技术。在临床前模型中,已经观察到从低分子量药物到抗体和免疫细胞等各种治疗剂的增强输送,以及肿瘤控制和生存率提高。该技术最近已进入颅外和颅内设备的临床试验。此外,该技术的安全性和可行性已在每月接受卡铂化疗的复发性胶质母细胞瘤患者中得到证实。本综述回顾了最常见的儿童脑肿瘤中 BBB 的特征。然后,总结并描述了超声 (US) 破坏 BBB 的原理和机制,这些原理和机制在组织学和生物学层面上均有描述。最后,介绍了在肿瘤模型中使用超声诱导 BBB 开放的临床前研究、最近的临床试验以及该技术在儿科中的潜在用途。
血脑屏障对保护中枢神经系统至关重要,但它也限制了药物向该区域的输送。因此,跨血脑屏障输送药物是免疫学、肿瘤学和神经病学领域的一个活跃研究领域;此外,迫切需要新方法来扩大中枢神经系统疾病的治疗选择。虽然以前的策略侧重于调节血脑屏障通透性或穿透屏障的小分子,但人们越来越关注用于改善药物输送的生物医学设备(外部或植入)。在这里,我们回顾了设备辅助的跨血脑屏障药物输送,强调了其在胶质母细胞瘤中的应用,胶质母细胞瘤是一种恶性程度极高的原发性脑癌,血脑屏障在其中起着核心作用。我们研究了胶质母细胞瘤中的血脑屏障及其特征、研究血脑屏障的新兴模型以及跨血脑屏障的设备辅助方法。最后,我们介绍了监测血脑屏障的方法和跨 BBB 药物输送的联合范例。
Sébastien Goutal、Anthony Novell、Sarah Leterrier、Louise Breuil、Erwan Selingue 等人。成像聚焦超声引起的血脑屏障破坏对 P 糖蛋白功能的影响。《Controlled Release 杂志》,2023 年,第 361 页,第 483-492 页。�10.1016/j.jconrel.2023.08.012�。�hal-04254542�
胶质母细胞瘤 (GBM) 是最常见、最具侵袭性的成人原发性脑癌,占所有恶性中枢神经系统 (CNS) 肿瘤的 14.6%。 [1] 美国患者的五年相对生存率为 6.8%,在所有原发性恶性 CNS 肿瘤中排名最低。 [1] 尽管过去几十年来做出了巨大努力,但 GBM 患者的预后却进展甚微。GBM 的标准治疗包括最大限度的安全手术切除,然后进行同时进行的口服甲基化剂替莫唑胺 (TMZ) 化放疗,然后进行辅助 TMZ。以前尝试过使用半开颅术进行完全手术切除,但由于肿瘤细胞弥漫性侵袭到脑部并且需要保留基本的脑功能,因此未能治愈。GBM 细胞以不同的方式侵入脑实质,包括以单细胞形式,并作为复发的储存器。对 GBM 进行广泛的分子分析已鉴定出反映异质性肿瘤遗传学和表观遗传学的不同转录亚型。TME 内肿瘤细胞、基质细胞和细胞外基质 (ECM) 之间复杂的细胞和细胞基质相互作用,导致 GBM 肿瘤生态系统动态且具有免疫抑制性,对现有治疗方法具有高度抵抗性。普遍复发、肿瘤内和肿瘤间高度异质性以及复发性 GBM 对治疗的抵抗性导致预后不良,70 岁以下患者的中位生存期仅为 14.6 个月。[2] 与其他实体瘤相比,将治疗药物递送到 GBM 肿瘤部位尤其具有挑战性,因为药物和细胞在脑部独特的血管屏障——血脑屏障 (BBB) 上的运输受到限制。 BBB 是循环血液与脑实质之间的一道屏障,可防止血源性病原体或有毒物质进入中枢神经系统,并维持中枢神经系统稳态。[3] BBB 可排除 98% 以上的小分子药物,并严格调节淋巴细胞外渗,限制化疗药物和效应 T 细胞在胶质母细胞瘤组织中的积累。[4] 调节 BBB 或绕过屏障可促进某些脑肿瘤治疗,这表明功能性 BBB 的存在可能对准确评估胶质母细胞瘤治疗至关重要。[5–7] 人们对重新利用 FDA 批准的
血脑屏障 (BBB) 保护大脑并维持神经元稳态。不同大脑区域的 BBB 特性可能有所不同,以支持区域功能,但人们对 BBB 异质性如何发生了解甚少。在这里,我们使用单细胞和空间转录组学将小鼠正中隆起(一种具有天然渗漏血管的脑室周围器官)与皮质进行比较。我们在内皮细胞 (EC) 和血管周围细胞(包括星形胶质细胞、周细胞和成纤维细胞)中发现了数百种分子差异。使用电子显微镜和水基组织透明化方法,我们揭示了这些区域中 EC 和血管周围细胞的不同解剖特化和相互作用模式。最后,我们确定了候选的区域富集 EC-血管周围细胞配体-受体对。我们的结果表明,EC 中的分子特化和独特的 EC-血管周围细胞相互作用都导致了 BBB 功能异质性。该平台可用于研究其他区域的 BBB 异质性,并可能促进中枢神经系统区域特异性治疗的发展。