摘要:缺血性中风是全球主要的健康问题,死亡率和致残率很高。不幸的是,目前缺乏有效的临床干预措施来管理中风后的神经炎症和血脑屏障 (BBB) 破坏,而这些对于脑损伤的发展和神经功能缺损至关重要。通过利用缺血性中风的病理进展,我们开发了一种靶向 M2 小胶质细胞的脂质纳米颗粒 (称为 MLNP) 方法,可以选择性地将编码表型转换白细胞介素 10 (m IL-10 ) 的 mRNA 递送到缺血脑,形成一个有益的反馈回路,驱动小胶质细胞极化向保护性 M2 表型发展,并增强 m IL-10 负载的 MLNP (m IL-10 @MLNPs) 向缺血区域的归巢。在缺血性中风的短暂性中脑动脉闭塞 (MCAO) 小鼠模型中,我们的研究结果表明静脉注射 m IL-10 @MLNPs 可诱导 IL-10 的产生并增强小胶质细胞的 M2 极化。由此产生的正环路增强了神经炎症的消退,恢复了受损的 BBB,并防止了中风后的神经元凋亡。使用缺血性中风的永久性远端 MCAO 小鼠模型,m IL-10 @MLNPs 的神经保护作用已通过减轻感觉运动和认知神经功能障碍得到进一步验证。此外,开发的基于 mRNA 的靶向疗法具有将治疗时间窗延长至中风后至少 72 小时的巨大潜力。这项研究描述了一个简单而多功能的 LNP 平台,用于将 mRNA 疗法选择性地递送到脑病变,展示了一种治疗缺血性中风和相关脑部疾病的有前途的方法。关键词:缺血性中风、脂质纳米颗粒、靶向递送、mRNA、表型转换
摘要:脂质纳米颗粒 (LNP) 介导的核酸疗法,包括 mRNA 蛋白质替代疗法和基因编辑疗法,在治疗神经系统疾病(包括神经退行性疾病、脑癌和中风)方面具有巨大潜力。然而,全身给药后将 LNP 递送至血脑屏障 (BBB) 仍未得到充分探索。在这项工作中,我们设计了一个用于 BBB (HTS-BBB) 的高通量筛选 transwell 平台,专门针对筛选 mRNA LNP 进行了优化。与大多数仅评估跨内皮单层运输的 transwell 检测不同,HTS-BBB 同时测量 LNP 运输和内皮细胞本身的 mRNA 转染。然后,我们使用 HTS-BBB 筛选由结构多样的可电离脂质制成的 14 个 LNP 库,并通过验证静脉注射后将 mRNA 递送到小鼠大脑的主要候选物来证明它可以预测体内性能。展望未来,该平台可用于筛选大量针对大脑的 LNP 库,以用于一系列蛋白质替代和基因编辑应用。关键词:脂质纳米颗粒、mRNA、脑输送、血脑屏障
一种实验方法,在静脉内(IV)(IV)给予大鼠大脑中大鼠大脑中的丙咪嗪和去甲胺的水平,通过静脉内微透析(IV)进行测量,无论是否没有先前对环孢子蛋白A(CSA)A(CSA)或Verapamil,两种P-GP抑制剂进行治疗。还定期测量血浆中的药物水平:微透析样品中的iripramine浓度在使用Verapamil或CSA进行预处理后显着增加,但是丙氨酸血浆药物动力学的浓度保持不变。此外,在用Verapamil预处理后,大脑和血浆中的载蛋白水平显着增加,但与CSA没有显着增加。摘要和影响当前的研究支持了这样一种观念,即P-gp活性限制了包括丙咪嗪在内的大脑中某些抗抑郁药的量,这表明P-gp抑制增加了丙咪嗪的脑内浓度。这些发现可能有助于解释TRD中对Verapamil的辅助治疗的有益反应的报告。
血脑屏障(BBB)是大脑和外围循环之间的动态脑屏障。包括脑毛细血管内皮细胞,周细胞和星形胶质细胞末端,BBB有效地屏蔽了大脑免受血液中有害毒素和病原体的影响(1,2)。血肿瘤屏障(BTB)是指位于脑微血管附近的一个修饰的BBB,该修饰是由于神经血管单元的变化而导致的,这是由于存在原发性脑肿瘤,包括神经母细胞瘤和其他内脏癌症,例如肺癌,乳腺癌,黑色素瘤等,例如(3)。P-糖蛋白(P-GP)在BBB中的表达可防止不必要的血液毒素和信号分子进入大脑(4-6)。这种错综复杂的结构不仅维护脑稳定性,而且还使大脑免受外部因素的影响。另一方面,当大脑中发生病理变化时,药物可能很难穿透BBB和BTB屏障,从而使药物挑战性脑部疾病治疗(7-9)。
在针对中枢神经系统 (CNS) 的药物开发中,发现能够穿过血脑屏障 (BBB) 进入大脑的化合物是最具挑战性的评估。几乎 98% 的小分子无法渗透 BBB,从而影响药物在 CNS 中的吸收、分布、代谢和排泄 (ADME) 机制,从而降低药物在 CNS 中的药代动力学。由于 CNS 通常无法进行许多复杂的程序,并且对数千种化合物进行体外渗透性研究可能非常费力,因此尝试通过实施机器学习 (ML) 方法来预测化合物通过 BBB 的渗透性。在这项工作中,使用 KNIME Analytics 平台,开发了 4 个预测模型,其中有 4 种 ML 算法,然后采用十倍交叉验证方法来预测外部验证集。在 4 种 ML 算法中,极端梯度提升 (XGBoost) 在 BBB 渗透性预测中表现出色,并被选为部署的预测模型。数据预处理和特征选择增强了模型的预测能力,整体来看,模型在训练集和外部验证集上分别达到了86.7%和88.5%的准确率以及0.843和0.927的AUC,证明了该模型具有较高的预测稳定性。
血脑屏障 (BBB) 是脑与外周循环之间的动态脑屏障。血脑屏障由脑毛细血管内皮细胞、周细胞和星形胶质细胞端足组成,可有效保护脑免受血液中有害毒素和病原体的侵害 (1,2)。血肿瘤屏障 (BTB) 是指位于脑微血管附近的改良血脑屏障,这种屏障是由于原发性脑肿瘤(包括神经母细胞瘤和其他内脏癌症,如肺癌、乳腺癌、黑色素瘤等)的存在导致神经血管单元发生变化而形成的 (3)。血脑屏障中 P-糖蛋白 (P-gp) 的表达可防止不必要的血液毒素和信号分子进入脑 (4-6)。这种复杂的结构不仅维护脑稳定性,而且还保护脑免受外界因素的影响。另一方面,当脑部出现病理改变时,药物可能难以穿透BBB和BTB屏障,使得药物治疗脑部疾病变得困难(7-9)。
结果:Prelp − / − 小鼠表现出神经炎症和神经血管完整性降低,导致小脑和皮质中 IgG 和葡聚糖渗漏。Prelp − / − 小鼠的组织学分析显示血脑屏障的细胞间完整性降低,周细胞和星形胶质细胞末端的毛细血管附着降低。RNA 测序分析发现 Prelp − / − 小鼠的细胞间粘附和炎症受到影响,基因本体分析以及基因集富集分析表明炎症相关过程和粘附相关过程(如上皮-间质转化和顶端连接)受到显著影响,表明 PRELP 是细胞间粘附的调节剂。免疫荧光分析表明,Prelp − / − 小鼠神经血管中钙粘蛋白、claudin-5 和 ZO-1 的粘附连接蛋白表达水平受到抑制。此外,体外研究表明,PRELP 应用于内皮细胞可增强细胞间完整性,诱导间充质-内皮转化并抑制 TGF-β 介导的细胞间粘附损伤。
摘要....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................816 重要性陈述.................... ... . ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 822 3. ABCB1/ABCG2 底物.................. ... ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................................................................................................................825 III. 血脑屏障上 ABCB1/ABCG2 的调节 .................. ... 826 A. 核受体. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 6. 雌激素受体. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 7. 芳基烃受体. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 829 B. 炎症和氧化应激信号 . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... 830
淋巴转移瘤 (BM) 是最常见的中枢神经系统肿瘤,导致癌症患者发病率和死亡率显著上升。大约 10%–30% 的成年人被诊断出患有 BM,每年估计有 97,800–170,000 例新病例。1 由于 BM 的组织病理学多变,发病率和存活率因具体组织学而异。肺癌、乳腺癌和黑色素瘤占所有 BM 的 67%–80%。2,3 目前,MRI 通常作为肿瘤分期的一部分进行,4 导致许多患者在就诊时发现亚临床 BM。虽然对于患有可控全身性疾病的患者,切除单发脑转移瘤的治疗价值仍然无可争议,但对于导致神经系统损伤的大型脑转移瘤(直径 > 3 厘米)、5 位于后颅窝处的脑转移瘤以及囊性或坏死性脑转移瘤,也应考虑进行手术。5
这项研究研究了来自多批次手机的电磁场,振动和铃声后,Wistar大鼠血脑屏障(BBB)的功能变化。25(25)雄性Wistar大鼠被随机分为五组(n = 5)。在六周内,A组(对照组)和测试组通过10分钟的电话接触到手机电磁场,每天从TECNO 900/1800 MHz以各种方式接触到手机电磁场。,即:B组 - 仅无声,振动 - 仅,仅铃声和铃声,分别具有振动。在暴露的第六周结束时,研究了使用Evans蓝色染料示踪技术和脑TNF-α的大脑各个区域的BBB。在大脑,大脑和大脑的两个半球中,BBB的BBB显着(α0.05)降低,并且在各种方式暴露于手机的所有动物中,大脑TNF-α的水平无关紧要。这些发现表明,来自多批次手机的电磁场,振动和声音的暴露可能是BBB完整性丧失的危险因素。
