摘要:由于在两种介电介质的一条有限界面上最初发现了Dyakonov表面波,因此至少有一个是各向异性的,广泛的研究,对其在具有阳性各向异性的材料的理论和体验研究中进行了研究。由于其存在的严格条件以及对位置各向异性的要求,这些波的潜在应用最初是限制的。在我们的研究中,我们介绍了一种新型的dyakonov表面波的理论预测和实验观察,该表面沿着两个具有负各向异性的介电介质之间的界面沿界面的平流传播。我们证明,由于带有两种金属板之间的浅层波导的特异性边界,因此对表面波的条件满足了各向异性介电的状态。我们通过在弱各向异性的近似中使用扰动理论来理论上研究这种模式,并证明了
使用波导模式的近场捕获和移动微粒可以实现稳定和紧凑的集成光学平台,以操纵,分类和研究单个微观对象。在这项工作中,研究了通过Bloch表面波在聚合物波中传播的一维光子晶体表面和位于波导表面上的光线的可能性。数值模拟。使用两光子激光光刻,在一维光子晶体的表面制造了Su-8聚合物波导。当Bloch表面波被激发时,聚苯乙烯微粒沿波导的运动被实验证明。
Xinyue Wu、Yabin Jin、Abdelkrim Khelif、Xiaoying Zhuang、Timon Rabczuk 等人。拓扑表面波超材料用于稳健的振动衰减和能量收集。先进材料和结构力学,2021 年,第 1937758 页 (9)。�10.1080/15376494.2021.1937758�。�hal- 03549400�
增强的定向光发射,由圆形腔 / stella的谐振bloch表面波辅助。 Boarino,L。; De Leo,N。; Munzert,P。; descrovi,e ..- in:ACS光子学。- ISSN 2330-4022。-6:8(2019),pp。2073-2082。[10.1021/acsphotonics.9b00570]
摘要:分形几何始终为多个电磁设计问题提供解决方案。本文使用分形几何(例如希尔伯特曲线和摩尔曲线)来设计高效的高阻抗表面。现代通信设备有许多传感器需要进行无线通信。无线通信的关键组件是天线。平面微带贴片天线因其低轮廓、紧凑和良好的辐射特性而广受欢迎。微带天线的结构缺点是它们的表面波会在接地平面上传播。高阻抗表面 (HIS) 平面是最小化和消除表面波的突出解决方案。HIS 结构表现为有源 LC 滤波器,可抑制其谐振频率下的表面波。结构的谐振频率通过其 LC 等效或通过分析反射相位特性获得。这项工作提出了类似于蘑菇 HIS 和分形 HIS 的传统 HIS 结构,例如希尔伯特曲线和摩尔曲线 HIS。通过应用平面波照射的周期性边界条件,可以获得 HIS 反射相位特性。结果是根据反射相位角得出的。传统的蘑菇结构在给定的 10 mm × 10 mm 和 20 mm × 20 mm 尺寸下表现出窄带特性。这些结构有助于更换 6 GHz 以下贴片天线的 PEC 接地平面。还设计了希尔伯特和摩尔分形,它们具有多频带响应,可用于 L、S 和 C 波段应用。HIS 的另一个设计挑战是突起,这增加了设计的难度。这项工作还展示了有通孔和无通孔对反射相位特性的影响。响应显示,在 x 波段操作下,通孔的影响最小甚至没有显著影响。
粗糙的金属表面会导致表面等离子体极化子 (SPP) 严重散射,从而限制 SPP 的传输效率。在此,我们提出了一种设计超紧凑等离子体路由器的通用方案,该路由器可以在任意形状的粗糙表面上限制和引导 SPP。我们的策略利用了最近提出的变换不变超材料。为了说明这种方法的优势,我们进行了有限元模拟,结果表明所设计的表面波路由器的性能不受厚度变化的影响。因此,1/6 厚度的变换不变超材料层可以显著抑制任意形状的金属凸起或缝隙的散射。我们还给出了基于周期性金属/ε 近零 (ENZ) 材料堆叠实现这种超紧凑表面波路由器的蓝图。
如果在过去的几十年中,热带气旋(TC)轨道的预测大大改善,那么对其强度的预测仍然无法捕获快速强度的变化(Emanuel 2018)。可能有助于改善预测的因素是对空气相互作用的深入了解。空气交换确实调节了海洋和大气之间的质量,热,动量和气体的交换,这驱动了TC的发展。表面波(冲浪者喜欢的表面波)已被证明可以调节此类交换。然而,在强烈的旋转和翻译旋风中观察和建模波和空气交换是一个真正的挑战。因此,在最新的预测和气候模型中对空气交换进行了参数化,但是现有的参数化不完善。多亏了新可用的卫星观测和高分辨率耦合模型,我们旨在评估和改善波浪诱导的TC下对空气相互作用的影响。
由于表面波和光线失真,很少有遥感技术能够很好地捕捉水下物体的图像。这意味着准确评估珊瑚礁等浅海生态系统的能力受到严重损害。为了解决这个问题,艾姆斯研究中心的创新者开发了一种能够清晰地透过海浪看到 3D 图像的技术。该技术消除了光学失真,以增强原本功率不足的光学系统。
纳米材料和生物结构的消化杂志卷。19,编号1,1月至2024年3月,第1页。 283 - 293石墨烯加载的波导的可调特性,被磁性材料包围,razzaz a*,A。Nawaz B,A。Ghaffar B A A. Ghaffar B A电气工程系,萨特姆·阿卜杜拉西兹王子工程学院,Al-kharj,Al-kharj 16278,萨特阿拉巴在平面铁素铁烯 - 磷酸铁岩波导结构上的传播电磁表面波(EMSW)。针对工作频率的归一化相和衰减阶段常数分析了特征曲线。在标准化相位和衰减阶段常数上观察到了铁素和石墨烯的不同参数的影响。响应这些参数,结构化的波导表现出了电磁表面波的方便传播,而Terahertz频率区域中的传播损失最小。拟议的波导可用地位在纳米光器设备,Terahertz过滤器,高度集成的Terahertz设备和通信系统中。(2023年10月13日收到; 2024年2月9日接受)关键字:表面波,等离子体,石墨烯,波导1。引言电磁表面波(EMSW)由于其在成像中的潜在应用以及甚至人类生命的各个方面而引起了当前纳米光场领域的广泛关注。这些EMSW在两个不同的介质的界面上激发了激发,并且随着其从接口移动而呈指数下降[1]。表面等离子体极性子(SPP)是在金属和介电之间传播的特殊EMSW。SPP由于研究人员的一些非凡电磁性状而增加了对研究人员的好奇心[2,3]。由于衍射极限,传统的光子设备在缩小尺寸至纳米范围内遇到困难。表面等离子体极性克服了该问题,使其适合将来的光子设备[4]。此外,SPP还提供了根据所需的应用在纳米范围内控制和操纵光分散和传播的潜在方法。当前基于金属的等离子体设备在社会中使用。金属在THZ频带上显示传播损失。为了克服该问题石墨烯材料。石墨烯是一个原子厚的平坦碳原子,包含结晶六边形结构。由于其独特的光学特性,例如较大的光学吸收,相对高的非线性和自偏效应,它引起了光子,电子,磁性,热和机械性能的极大关注[5-8]。与其他材料,较大的表面积,零带结构和高机械强度相比,单一石墨烯层具有较大的导热率。最近的文献工作表明,通过化学掺杂或偏置,石墨烯可以在中红外区域表现出金属性能[9]。石墨烯等离子体具有比最小传播损失的金属更强的限制。石墨烯可以在Terahertz(THZ)频率下维持高度狭窄的表面等离子体,从而实现了以深波长尺度引导THZ波的不同策略。石墨烯的特性可以通过改变其掺杂水平和外部栅极电压来调整更高频率[10]。铁氧体是各向异性材料的磁场强度最低的任何永久磁性材料的磁场强度较大,较大的能量产物范围为0.8至5.3 MOE。他们即使在较高的温度下也保持其性能,并以最小的能量损失表现出最佳性能。
由于金属箔表面粗糙而导致的导体损耗对为 10+ Gbps 网络设计的背板走线上的高速信号传播有显著影响。本文提出了一种评估这些影响(包括信号衰减和传播相速度)的实用方法。假设周期性结构来模拟粗糙度轮廓的形态。从光栅表面波传播常数中提取等效表面阻抗来模拟粗糙度。因此,可以在传统的衰减常数公式中使用这种修改后的表面阻抗来计算实际导体损耗。使用全波仿真工具和测量验证了该方法,并表明能够在 0.2 dB/m 相对误差内提供可靠的结果。
