对高性能电池日益增长的需求推动了人们对插层正极材料的晶体/表面结构和电化学性质的根本性理解,其中橄榄石型、尖晶石和层状锂过渡金属氧化物材料在过去十年中由于成功的商业化而受到了特别的关注。虽然目前大多数研究集中于这些材料的宏观和体相晶体结构,但我们以前的研究表明,作为发生电荷转移的受限区域,正极材料的界面结构在很大程度上决定了它们的电化学性能,因为结构对称性从三维(体相)破坏到二维(表面),从而导致在不同的化学/电化学条件下的重构。通过总结该主题的研究并提出我们的观点,本教程评论将首次揭示原子/分子尺度上表面结构和界面重构之间的相关性及其对相应电化学性能的直接影响。更重要的是,通过扩展从这三个经过充分研究的系统中获得的知识,我们相信建立的相同原理可以普遍适用于已成为新电池化学前沿的其他阴极材料。
摘要:摩擦电纳米发电机 (TENG) 是一种可持续和可再生技术,用于收集自然界中浪费的机械能,例如运动、波浪、风和振动。TENG 装置通过摩擦材料对接触和分离的循环工作原理发电。该技术在能源生产、人类护理、医药、生物医学和工业应用领域有着突出的应用。TENG 装置可应用于许多实际应用,例如便携式电源、自供电传感器、电子设备和电力消耗设备。借助 TENG 能源技术,可以在不久的将来减少甚至解决重大能源问题,例如减少气体排放、加强环境保护和改善人类健康。通过利用摩擦电特性具有显著差异的材料或实施先进的结构设计,可以提高 TENG 的性能。本综述全面研究了 TENG 技术在利用机械废能方面的最新进展,主要关注其可持续性和可再生能源属性。它还深入探讨了优化摩擦表面结构以提高输出性能、实施储能系统以确保稳定运行和长期使用、探索能量收集系统以有效管理收获的能量以及强调 TENG 在各种情况下的实际应用等主题。结果表明,TENG 技术有可能在不久的将来广泛应用于可持续能源生产、可再生能源、工业和人类护理。
人们越来越关注由于过度使用塑料而引起的环境问题,并且开始寻找食物包装的替代可生物降解材料。因此,在目前的工作中,与纯PVA膜相比,使用果胶和聚乙烯醇(PVA)复合材料制备了可生物降解的塑料膜。使用FT-IR,SEM和拉伸技术对制备的膜进行表征。获得的结果表明,PVA膜没有生物降解率,而果胶膜显示出非常速度的降解。PVA/果胶膜的比例分别为2:1、1:1和1:2分别为9.4、12.2和15.2%的重量。PVA/果胶膜的 FT-IR光谱通过冻融过程表现出PVA和果胶之间的良好相互作用。 PVA膜的平滑表面结构在SEM下没有或几个孔出现,而果胶膜的表面结构则粗糙,毛孔很粗糙。 PVA/果胶膜表面显示中间特征。 拉伸试验表明,PVA膜的最大应力从16.25±0.79增加,而果胶膜的最大应力从PVA/果胶膜上增加了31。 Also, the maximum force increased from 14.63 ± 0.71 for PVA membrane and 7.72 ± 0.68 for pectin membrane to become 26.15 ± 0.80, 25.27 ± 1.51, and 48.00 ± 1.82 for PVA/Pectin membrane at the levels of 1:1, 2:1, 1:2, respectively, indicating enhanced mechanical properties with the increase of果胶浓度。 关键字:果胶;聚乙烯醇(PVA);可生物降解包装膜;微观结构;机械性能FT-IR光谱通过冻融过程表现出PVA和果胶之间的良好相互作用。PVA膜的平滑表面结构在SEM下没有或几个孔出现,而果胶膜的表面结构则粗糙,毛孔很粗糙。PVA/果胶膜表面显示中间特征。拉伸试验表明,PVA膜的最大应力从16.25±0.79增加,而果胶膜的最大应力从PVA/果胶膜上增加了31。Also, the maximum force increased from 14.63 ± 0.71 for PVA membrane and 7.72 ± 0.68 for pectin membrane to become 26.15 ± 0.80, 25.27 ± 1.51, and 48.00 ± 1.82 for PVA/Pectin membrane at the levels of 1:1, 2:1, 1:2, respectively, indicating enhanced mechanical properties with the increase of果胶浓度。关键字:果胶;聚乙烯醇(PVA);可生物降解包装膜;微观结构;机械性能
摘要 锂过量阳离子无序岩盐 (DRX) 氧化物已显示出作为高能量密度锂离子正极的潜力。它们通常利用 O 的氧化还原来实现高容量,这会导致表面氧气损失,从而影响正极性能。在这里,我们通过比较两个原型 DRX 正极 Li 1.2 Ni 0.333 Ti 0.333 Mo 0.133 O 2 (LNTMO) 和 Li 1.2 Mn 0.6 Nb 0.2 O 2 (LMNO) 来阐明表面结构演变对其电化学性能的影响。两种正极均能实现高容量,但氧气损失会导致 LNTMO 出现显著极化,而 LMNO 受到的影响要小得多。我们表明,虽然两种材料的颗粒表面都会发生金属致密化,但产生的表面结构却截然不同。 LMNO 表面形成尖晶石相,可有效缓解氧损失并实现快速锂传输,而 LNTMO 表面形成致密的 DRX,阻碍锂传输,无法缓解氧损失。这些发现证明了 DRX 正极表面结构的重要性。
图。12。将包含N原子的催化表面结构转化为CNN输入表示的图。a)单速编码九个基本元素特征,b)产生从voronoi polyhedron获得的来自实体角(ω)的原子的相邻信息。经过Back等人的许可。J. Phys。 化学。 2019; 4401版权所有2019年美国化学学会。J. Phys。化学。2019; 4401版权所有2019年美国化学学会。
摘要 固体颗粒冲蚀是制造业、能源业、军事、航空等工程领域的常见现象,然而随着工业要求的不断提高,抗固体颗粒冲蚀材料的研发仍然是一个巨大的挑战。经过数十亿年的进化,许多天然材料表现出独特而卓越的抗固体颗粒冲蚀性能,这些材料通过多样化的策略实现了同样优异的抗固体颗粒冲蚀性能,这种抗性源于其微纳米尺度的表面结构和界面材料特性,为固体颗粒冲蚀的多种新解决方案提供了灵感。本文首先总结了近年来天然抗固体颗粒冲蚀材料研究的重要进展及其一般设计原理。根据这些原理,人们可以获得多种抗冲蚀结构。结合先进的微纳米制造技术,人们已经获得了多种人工抗固体颗粒冲蚀材料。然后,展望了抗固体颗粒冲蚀材料的潜在应用。最后,简要讨论了抗固体颗粒冲蚀材料面临的挑战和有望取得的突破。关键词:仿生材料、固体颗粒侵蚀、表面结构、微/纳米制造技术、应用
图 1. Pt 电催化剂的设计和表征。(a)Pt 基 LCB 中 CO 2 转化过程示意图。(b)CO 2 、Li 和 Li 2 CO 3 在 Pt 表面不同取向上的吸附行为侧视图和(c)相应吸附能的比较。(d)Li 2 CO 3 在 Pt 表面不同取向上的分解能。(e)不同电极的 XRD 分析。(f)HTS 后电极的详细表面结构和 TEM 观察(比例尺 = 200 nm)。
Au纳米颗粒在石英底物上的平面分布。(b)体积| e/e 0 | 2通过FDTD模拟获得的现场分布对谐波。(c-d)在| e/e 0 |的不同位置的横截面切片2增强AU跨表面结构。(E)分形Au-Tio 2超材料的示意图,由Au晶体随机分布在三维TIO 2分形支架中。(f)| e/e 0 |的体积分布LSPR共振的2个字段。(G-H)在| E/E 0 |的不同位置的横截面切片2增强3D Au-Tio 2结构。20
ST微电子学,尤其是其技术开发站点并扭动生产,因此看到像素体系结构并加速了构成构成捏光二极管(“ Pinned Photodiode”)关键元素优势的发展的一部分[1]。这种体系结构使得可以包含模糊的电流,该电流是在没有光刺激的情况下记录的石膏信号级别,并且直接从系统的动态范围的低限中参与。仍然有限制传感器的性能,应继续减少[2]。此外,新像素还包含特征,例如后面的照明或表面结构,这些表面测试了减少现有黑暗的技术。