本论文描述了一种定制的腔量子电动力学 (QED) 工具箱,用于光学微柱中的量子点 (QD) 发射器。该工具箱是为 MATLAB® 开发的,它允许使用全腔 QED 模型或有效绝热哈密顿量来仅与 QD 子空间一起工作。该工具箱模拟连续和脉冲波状态下的输出强度、一阶和二阶相关性以及通量谱密度。结果表明,与完整模型相比,绝热模型降低了计算成本,并允许在 QD 和腔之间的弱耦合状态下执行精确的量子光学模拟。为了使近似结果令人满意,腔体的衰减时间必须比其他子系统(包括 QD 动力学和入射场)更快:QD 的 Rabi 频率必须比腔体的衰减率慢得多,而对于入射场,其演化必须比腔体中的光子寿命慢。这项工作还可以应用于 1-D 光子晶体波导和纳米腔中的激发偶极子等更一般的领域,并且可以推广到更复杂和更现实的系统。这包括各向异性中性量子点的描述(由 3 级系统描述)或具有自旋自由度的带电量子点(由 4 级系统建模),同时考虑腔体和输入/输出场的极化自由度。
本文介绍了合成,晶体生长,检测器制造,辐射硬化研究,MCNP建模以及二依依氏锂或Inse 2的表征。这个新开发的室温热中子检测器具有半导体和闪烁的特性,适用于中子检测应用。liinse 2是从元素li开始合成的,由于Li的高反应性,分为两个步骤。使用垂直Bridgman方法生长了一个含Iinse 2的单晶。使用光吸收测量值发现室温带隙为2.8 eV。散装电阻率。光电导率测量2晶片的光电识别在445 nm左右的光电流中。核辐射探测器是用单晶晶片制成的,并测量了各种偏见的α颗粒的响应。估计了千篇一律的产物。γ辐照研究的吸收剂量范围为0.2126至21,262 Gy。在每次辐照后都进行了两个晶圆的表征。γ辐射产生的光产率降低,这转化为alpha检测光谱质心的较低通道数。它也显示出第一次辐照后的衰减时间大大减少。这些是对这种材料进行伽马辐射硬化的第一批研究。
理解管理柔性聚合物(例如染色体)的结构和动力学的机制,尤其是运动驱动的活动过程的特征在基因组生物学中引起了极大的兴趣。我们将染色体研究为一种粗粒聚合物模型,其中微观运动动态是通过添加性持续噪声捕获的。主动稳态以两个参数为特征:主动力,控制持续的噪声振幅和相关时间,即活动噪声的衰减时间。我们发现活动在长距离上驱动了相关运动,并且动态压实的状态驱动到全球倒塌的纠缠小球中。减少了托管逻辑约束,使纠缠的球不稳定,并且被困在球体中的活动段向周围移动,从而导致外围附近的富集活性单体密度。我们还表明,异质活性导致高度动态物种与动态较小的物种的分离,这表明活性在染色体隔室分离中的作用。将活性添加到实验数据衍生的结构中,我们发现活跃的基因座可能会机械扰动和通过表观遗传学驱动的被动自我关联建立的开关室。活动的关键区别签名是在各个滞后时间对所有动态式(亚扩散,有效的扩散和超扩散)的探索增强的探索,并在各个滞后时间进行了探索,以及诸如动态指数之类的可观察结果的扩展分布。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
摘要 —闪烁体是射线成像和断层扫描 (RadIT) 的重要材料,当使用电离辐射(例如 X 射线、高能带电粒子或中子)来揭示物质的光学不透明内部结构时。自从伦琴发现和发明以来,RadIT 现已有多种形式或模式,例如相位衬度 X 射线成像、相干 X 射线衍射成像、1 MeV 以上的高能 X 射线和 γ − 射线射线照相术、X 射线计算机断层扫描 (CT)、质子成像和断层扫描 (IT)、中子 IT、正电子发射断层扫描 (PET)、高能电子射线照相术、μ 子断层扫描等。高空间、时间分辨率、高灵敏度和辐射硬度等是 RadIT 性能的常见指标,除闪烁体外,粒子源(尤其是高亮度加速器和高功率激光器)、光电探测器(尤其是互补金属氧化物半导体 (CMOS) 像素化传感器阵列)以及最近的数据科学的进步也使这些指标得以实现。医学成像、无损检测、核安全和保障措施是 RadIT 的传统应用。快速增长或新兴的应用示例包括太空、增材制造 (AM)、机器视觉和虚拟现实或“元宇宙”。根据 RadIT 指标讨论了闪烁体指标,例如光产量、衰减时间和辐射硬度。SCINT22 会议期间展示了 160 多种闪烁体和应用。一些新的趋势包括无机和有机闪烁体复合材料或异质结构、钙钛矿和单晶微米厚薄膜的液相合成、最近使用多物理模型和数据科学来指导闪烁体的开发和发现、结构创新,如光子晶体、纳米闪烁体,
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
摘要本研究使用电化学方法研究石墨烯量子点(GQD)的光学特性的合成和分析,以研究光电和生物成像技术中潜在的应用。GQDS是一种纳米材料,其量子大小由于独特的光学特性而显示出巨大的电子和光电应用潜力。之所以选择电化学方法,是因为其能够生产具有均匀尺寸分布的GQD。使用2B铅笔杆作为NaOH电解质溶液中的电极和在电压的效果下进行柠檬酸进行合成过程。柠檬酸浓度的变化用于评估其对产生GQD的光学特性的影响。使用UV-VIS光谱,光致发光(PL)和时间分辨光致发光(TRPL)进行表征。UV-VIS表征的结果表明,在212 nm至250 nm的波长下,吸收峰,表明GQD形成的成功,以及随着柠檬酸浓度的增加,吸收强度的增加。pL频谱显示出强度差异的强光发射,但对于每种浓度变化而言,排放的峰值几乎相同。TRPL分析表明,发光的寿命不受柠檬酸浓度的变化影响,所有样品均表明衰减时间均匀。关键字:石墨烯量子点,电化学,光学特性,UV-VIS,光致微照射,时间分辨的光致发光。这项研究的结果表明,电化学方法可以产生具有所需的光学特性和良好控制纳米材料的光学特性的GQD。This study provides an important insight into the control of GQDS optical properties through variations in the concentration of precursors, which has the potential to applications in the fields of optoelectronics and bioimaging, as well as making an important contribution to the understanding of GQDS optical properties and further development of this nanomaterial -based application.
抽象的量子技术是物理和工程领域的扩展领域,该方案的开发是基于量子力学的增强或新颖应用的协议和设备的开发。这包括量子计算和量子通信。量子计算机承诺基于与光学和仿真问题相关的叠加以及大量分解的计算速度 - 对我们的经典加密方案构成威胁。量子通知通过根据量子力学定律提供无条件安全的通信通道来解决此问题。此外,量子通信将允许在远程量子计算机之间交换量子信息,从而启用分布式量子计算。连接量子计算机或处理器的基础结构称为量子网络。网络节点处的固定量子位用于执行信息处理或存储操作,而频率量子位连接节点并启用量子信息的传输。光子是出色的量子位,因为它们以光速传播并且具有较小的相互作用横截面。因此,量子网络需要光的量子状态来提供量子量。这些光的量子状态需要纠缠,难以区分和波长匹配,以使它们要么在网络中经历较低的传输损失,要么可以与其他量子技术(如基于原子的量子记忆)接触。在本文中,已经研究了单个自组装的光学活性半导体量子点的单个,无法区分或纠缠的光子的发射,我们选择的量子发射器。所研究的量子点在电信范围内发射或接近rubidium中的D 1-转换。在本论文中执行的实验的主要方面是通过使它们使它们的波长(可降低)来研究发射器到未来的量子网络中,并将它们整合到光子结构中并采用谐振激发方案,以使光子具有不预定的纯度纯度,难以置信的区别能力或实用的相关性。在电信范围内,我们研究了INASP纳米线量子点,其发射的发射从接近界面范围转移到电信O – band和c – band。单个光子发射以类似于其近红外对应物类似的量子点的衰减时间。此外,在电信C带中排放的INAS/GAAS量子点集成到压电 - 电动子板上,并通过使用商业
上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
闪烁显像和荧光镜面X射线成像的组合可以使涉及放射性核素(例如无线电栓塞)的较短,更容易的介入程序。由于同时获得解剖和核信息,这可能会减轻患者的负担并简化医院的结构。虽然已经可以使用各种多模式成像技术,并且使用\ cite {cherry2009multimotalization},但这种新方法在临床C-arm \ cite \ cite {van2019dual}上直接将伽马摄像头安装在平面X射线检测器后面。该混合C臂用于介入X射线和闪烁显像成像(IXSI)的优点包括紧凑的设计和自然良好的图像对齐。但是,仍然需要解决一些缺点,尤其是伽马摄像头\ cite {koppert2018 impact}中X射线诱导的盲目效应。到今天为止,大多数临床伽马相机都使用NAI(TL)作为闪烁体。该材料具有相对较高的后光,在每个X射线脉冲之后产生一个背景信号。这种高背景掩盖了伽马光子产生的信号,该信号由radionuclide \ cite {koppert2019 comparative}发出。因此,这项研究的重点是寻找具有与NAI(TL)相似的属性但余热较低的闪烁体。找到了这样的,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。 选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。从每种类型的晶体中的X射线能量沉积中,可以估计闪烁的光发射和余辉。随后将余辉强度与同一闪烁材料中的单个140 keV光子产生的光信号进行比较,通过计算X射线脉冲后100 ms的140 keV光子和余潮引起的光的比率。这些是CEBR3,CDWO4,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)。从这些,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)是新开发的材料。内部测量值至少包括余辉,衰减时间和能量分辨率测量。将在会议上介绍仿真的广泛结果,并将在内部测量结果带来。