关键词:机制,X射线散射,疲劳,应变,脱位阐明钢的氢含量机制是因为可以一次激活多种机制或甚至可能需要协同的共同存在激活的事实,这使钢的氢含量机制变得复杂。一些领先的氢化氢提议机制包括氢增强的脱粘(HEDE),氢增强的局部可塑性(帮助)机制和纳米玻璃体合并机制(NVC)。在HEDE中,一旦氢浓度达到临界浓度,氢在高三轴应力位置的积累会导致Fe-FE键的衰弱。在帮助中,引入氢气会影响Fe格子中位错的行为,通常会增强钢框架中的脱位迁移率。在NVC中,预计氢会导致空缺的稳定和促进(“纳米级空隙”)团聚。对这些机制的完全理解,它们与疲劳特性的关系以及它们相互作用的相互作用需要一次测量,能够一次探测所有三种机制。在这里,我们同时提出高能X射线衍射(HEXRD)和小角度的X射线散射(SAXS)测量,在氢气中钢裂纹的原位疲劳期间。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。 ,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。我们将在帮助,HEDE和NVC机制的背景下讨论空气中在空气中和氢中生长的裂纹尖端之间的差异。
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
应使裂纹尖端在其前端的最大可能长度上位于登记册规定的焊接接头区域内(焊缝中心、与熔合线相邻的金属等)。焊接程序的技术参数和边缘准备类型应符合要测试的焊接接头类型。在标记和切割缺口之前,必须进行蚀刻和研究金属内部结构。应通过大量试验样本(每个试验温度最多 8-10 个)以及在试验后拒绝裂纹扩展超出研究区域范围的样本来确保获得的结果的准确性。
描述了“3”ABsTnAcT 实验,揭示了 Fe-3Si 钢和普通碳钢板中缺口和裂纹前塑性区的三维特征。这些将平面应力状态定义为施加应力和板强度的函数。它们还为 DM(Dugdale - Muskhelishvili)模型作为平面应力下裂纹的试验性弹塑性解决方案提供了理论依据。描述了一种考虑加工硬化和速率敏感塑性变形的方法的改进方法。这样,无缺口拉伸性能(应力-应变曲线和面积减小)可用于计算塑性区尺寸、裂纹尖端位移和应变、裂纹延伸应力和断裂韧性,与实验结果一致。最后,该方法扩展到延性裂纹扩展,并用于计算
本文件包含两种船用钢 EH36 和 HSLA 80 的延性-脆性过渡区断裂的实验和分析研究结果。文中给出了使用不同应变速率的拉伸、夏比和断裂韧性试验结果。断裂韧性通过 J 积分和裂纹尖端张开位移 (CTOD) 来量化。弹塑性有限元分析与局部失效准则相结合,推导出过渡区 J 和 CTOD 试验的尺寸极限。通过实验和分析探索了 J 和 CTOD 之间的关系。理论夏比断裂韧性关系用于预测钢的 CTOD 过渡曲线。对多种钢的夏比和 CTOD 转变温度进行了比较。
1.1 本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力,起到裂纹抑制器的作用。负载通过粘合层从基板转移到复合材料补片上。此外,复合材料补片的附加约束可以防止这些裂纹合并成更大的裂纹。存在预测复合材料补片配置有效性的分析能力,但此类分析需要特定的理想化和假设,必须通过实验验证才能将这项技术用于实践。我们提出的项目旨在将这项技术开发为铝钢船舶板层断裂修复的有用且可靠的工具,并促进其在工业上的接受和实施。
2.2 在船舶结构典型的疲劳载荷循环中,裂纹尖端的应力从拉伸变为压缩。在压缩应力期间以及在载荷循环的部分拉伸部分中,应力强度小于打开裂纹尖端所需的值 K OP ,由于裂纹闭合的影响,不会发生裂纹扩展。在疲劳试验(例如 SSC-448 的试验)中考虑裂纹闭合,其方法为通过测量载荷循环期间的裂纹打开位移并观察载荷与裂纹打开位移曲线中的非线性来确定 K OP 。通过这样确定的 K OP 估计值,可以确定应力强度因子的有效范围� K 有效 。SSC-448 等来源中提供的 da/d/N 与 DK 的关系图实际上是� K 有效 的函数。
1.0 目标。1.1 本研究的目的是探索和实验验证复合材料补片在防止裂纹扩展和延长铝钢船舶结构寿命方面的应用。复合材料补片通过降低裂纹尖端区域的应力,起到裂纹抑制器的作用。负载通过粘合层从基板转移到复合材料补片上。此外,复合材料补片的附加约束可以防止这些裂纹合并成更大的裂纹。存在预测复合材料补片配置有效性的分析能力,但此类分析需要特定的理想化和假设,必须通过实验验证才能将这项技术用于实践。我们提出的项目旨在将这项技术开发为铝钢船舶板层断裂修复的有用且可靠的工具,并促进其在工业上的接受和实施。
数字图像相关 (DIC) 已成为评估机械实验(尤其是疲劳裂纹扩展实验)的宝贵工具。评估需要裂纹路径和裂纹尖端位置的准确信息,但由于固有的噪声和伪影,这些信息很难获得。机器学习模型在识别标记的 DIC 位移数据时非常成功。为了训练具有良好泛化的稳健模型,需要大数据。然而,由于实验成本高昂且耗时,材料科学与工程领域的数据通常很少。我们提出了一种使用带有物理引导鉴别器的生成对抗网络生成合成 DIC 位移数据的方法。为了确定数据样本是真是假,该鉴别器还接收派生的 von Mises 等效应变。我们表明,这种物理引导方法可以提高样本的视觉质量、切片 Wasserstein 距离和几何分数。
数字图像相关 (DIC) 已成为评估机械实验(尤其是疲劳裂纹扩展实验)的宝贵工具。评估需要裂纹路径和裂纹尖端位置的准确信息,但由于固有的噪声和伪影,这些信息很难获得。机器学习模型在识别标记的 DIC 位移数据时非常成功。为了训练具有良好泛化的稳健模型,需要大数据。然而,由于实验成本高昂且耗时,材料科学与工程领域的数据通常很少。我们提出了一种使用带有物理引导鉴别器的生成对抗网络来生成合成 DIC 位移数据的方法。为了确定数据样本是真是假,该鉴别器还接收派生的 von Mises 等效应变。我们表明,这种物理引导方法可以提高样本的视觉质量、切片 Wasserstein 距离和几何分数。